Skip to main content

EPR of Cobalt-Substituted Zinc Enzymes

  • Chapter
  • First Online:

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 29))

Abstract

Co(II) is sometimes utilized as a spectroscopically active substitute for Zn(II) in enzymes. Metal binding sites in enzymes that contain catalytically active Zn(II) generally yield high-spin S = 3/2 Co(II) ions when substituted with cobalt, and these provide EPR spectra rich in information. Extracting this information involves an appreciation of the extent to which the properties of Co(II) mirror those of Zn(II), careful sample preparation and biochemical characterization, careful recording of the EPR data, and the ability to interpret spectra in a quantitative way. Here, the applicability of Co(II) as a structural and functional mimic of Zn(II) in enzymes is considered and a brief update of EPR studies in the literature is presented. Methods of substitution of Zn(II) by Co(II) are described. Recording EPR spectra of high-spin Co(II) that will provide useful information is not a trivial exercise, and experimental considerations are discussed in some detail. The analysis of EPR spectra in terms of spin-Hamiltonian parameters is described, along with their interpretation in structural terms. Complementary techniques to EPR are very briefly discussed, and a case study is presented as an example of how EPR of Co(II) can provide mechanistic information on a zinc enzyme that is unavailable by other techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vallee BL, Rupley JA, Coombs TL, Neurath H. 1958. The release of zinc from carboxypeptidase and its replacement. J Am Chem Soc 80:4750–4751.

    Article  CAS  Google Scholar 

  2. Vallee BL, Galdes A. 1984. The metallobiochemistry of zinc enzymes. Adv Enzymol 56:283–430.

    CAS  PubMed  Google Scholar 

  3. Huheey JE. 1983. Inorganic chemistry. New York: Harper & Row.

    Google Scholar 

  4. Maret M, Vallee BL. 1993. Cobalt as probe and label of proteins. Methods Enzymol 226:52–71.

    Article  CAS  PubMed  Google Scholar 

  5. Crawford PA, Yang K-W, Narayan S, Bennett B, Crowder MW. 2005. Spetroscopic studies on Co(II)-substituted metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. Biochemistry 44:5168–5176.

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Stieglitz A, Kantrowitz ER. 2005. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry 44:8378–8386.

    Article  CAS  PubMed  Google Scholar 

  7. Werth MT, Tang S-F, Formicka G, Zeppezauer M, Johnson MK. 1995. Magnetic circular dichroism and electron paramagnetic resonance studies of cobalt-substituted horse liver alcohol dehydrogenase. Inorg Chem 34:218–228.

    Article  CAS  Google Scholar 

  8. Bennett B, Holz RC. 1997. EPR Studies on the mono- and dicobalt(II)-substituted forms of the aminopeptidase from Aeromonas Proteolytica: insight into the catalytic mechanism of dinuclear hydrolases. J Am Chem Soc 119:1923–1933.

    Article  CAS  Google Scholar 

  9. Garrity JD, Bennett B, Crowder MW. 2005. Direct evidence that the reaction intermediate of metallo-lactamase L1 is metal bound. Biochemistry 44:1078–1087.

    Article  CAS  PubMed  Google Scholar 

  10. Kleifeld O, Rulfisek L, Bogin O, Frenkel A, Havlas Z, Burstein Y, Sagi I. 2004. Higher metal–ligand coordination in the catalytic site of cobalt-substitiuted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis. Biochemistry 43:7151–7161.

    Article  CAS  PubMed  Google Scholar 

  11. Kremer-Aach A, Kläui W, Bell R, Strerath A, Wunderlich H. Mootz D. 1997. Cobalt as a probe for zinc in metalloenzyme model compounds? A comparison of spectroscopic features and coordination geometry of four- and five-coordinate complexes. Inorg Chem 36:1552–1563.

    Article  CAS  PubMed  Google Scholar 

  12. Bennett B. 2002. EPR of Co(II) as a structural and mechanistic probe of metalloprotein active sites: characterisation of an aminopeptidase. Curr Topics Biophys 26:49–57.

    CAS  Google Scholar 

  13. Kobayashi M, Shimizu S. 1999. Cobalt proteins. Eur J Biochem 261:1–9.

    Article  CAS  PubMed  Google Scholar 

  14. Grell E, Bray RC. 1971. Electron paramagnetic resonance spectroscopy of bovine cobalt carbonic anhydrase B. Biochim Biophys Acta 236:503–506.

    CAS  PubMed  Google Scholar 

  15. Martinelli RA, Hanson GR, Thompson JS, Holmquist B, Pilbrow JR, Auld DS, Vallee BL. 1989. Characterization of the inhibitor complexes of cobalt carboxypeptidase a by electron paramagnetic resonance spectroscopy. Biochemistry 28:2251–2258.

    Article  CAS  PubMed  Google Scholar 

  16. Fung C-H, Mildvan AS, Leigh JS. 1974. Electron and nuclear magnetic resonance studies of the interaction of pyruvate with transcarboxylase. Biochemistry 13:1160–1169.

    Article  CAS  PubMed  Google Scholar 

  17. Bicknell R, Hanson GR, Holmquist B, Little C. 1986. A spectral study of Cobalt(II)- substituted Bacillus cereus phospholipase C. Biochemistry 25:4219–4223.

    Article  CAS  PubMed  Google Scholar 

  18. Bubacco L, Magliozzo RS, Beltramini M, Salvato S, Peisach J. 1992. Preperation and spectroscopic characterization of a coupled binuclear center in cobalt(II)-substituted hemocyanin. Biochemistry 31:9294–9303.

    Article  CAS  PubMed  Google Scholar 

  19. Horecker BL, Tsolas O, Lai CY. 1972. Aldolases. In The enzymes, Vol. 7, 3rd ed, pp. 213–258. Ed PD Boyer. New York: Academic Press.

    Chapter  Google Scholar 

  20. Xu D, Xie D, Guo H. 2006. Catalytic mechanism of class B2 metallo-β-lactamase. J Biol Chem 281:9740–8747.

    Google Scholar 

  21. Davis MI, Bennett MJ, Thomas LM, Bjorkman PJ. 2005. crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci USA 102:5981–5986.

    Article  CAS  PubMed  Google Scholar 

  22. Kaznowski A, Wlodarczak K. 1991. Enzymatic characterization of Vibrionaceae strains isolated from environment and cold-blooded animals. Acta Microbiol Pol 40:71–76.

    CAS  PubMed  Google Scholar 

  23. Maras B, Greenblatt HM, Shoham G, Spungin-Bialik A, Blumberg S, Barra D. 1997. Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc-containing aminopeptidases. Eur J Biochem 236:843–846.

    Article  Google Scholar 

  24. Merkel JR, Traganza ED, Mukherjee BB, Griffin TB, Prescott JM. 1964. Proteolytic activity and general characteristics of a marine bacterium, Aeromonas proteolytica Sp. N. J Bacteriol 87:1227–1233.

    CAS  PubMed  Google Scholar 

  25. Scoglio ME, DiPietro A, Picerno I, Delia S, Mauro A, Lagana P. 2001. Virulence factors in vibrios and aeromonads isolated from seafood. New Microbiol 24:273–280.

    CAS  PubMed  Google Scholar 

  26. Stevens DL, Bryant AE. 2002. The role of clostridial toxins in the pathogenesis of gas gangrene. Clin Infect Dis 35:S93–S100.

    Article  CAS  PubMed  Google Scholar 

  27. Toma C, Honma Y. 1996. Cloning and genetic analysis of the Vibrio cholerae aminopeptidase gene. Infect Immun 64:4495–4500.

    CAS  PubMed  Google Scholar 

  28. Bennett B, Holz RC. 1997. Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding. Biochemistry 36:9837–9846.

    Article  CAS  PubMed  Google Scholar 

  29. Bennett B, Holz RC. 1998. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinephosphonic acid, a transition state analogue of peptide hydrolysis. J Am Chem Soc 120:12139–12140.

    Article  CAS  Google Scholar 

  30. De Paola CC, Bennett B, Holz RC, Ringe D, Petsko GA. 1999. 1-butaneboronic acid binding to Aeromonas proteolytica aminopeptidase: a case of arrested development. Biochemistry 38:9048.

    Article  CAS  PubMed  Google Scholar 

  31. Stamper C, Bennett B, Edwards T, Holz RC, Ringe D, Petsko G. 2001. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinephosphonic acid: spectroscopic and crystallographic characterization of the transition state of peptide hydrolysis. Biochemistry 40:7035–7036.

    Article  CAS  PubMed  Google Scholar 

  32. Bennett B, Antholine WE, D'souza VM, Chen G, Ustinyuk L, Holz RC. 2002. Structurally distinct active sites in the copper(II)-substituted aminopeptidase from Aeromonas proteolytica. J Am Chem Soc 124:13025–13034.

    Article  CAS  PubMed  Google Scholar 

  33. Bienvenue D, Bennett B, Holz RC. 2000. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinethiol: kinetic and spectroscopic characterization of a slow, tight-binding inhibitor-enzyme complex. J Inorg Biochem 78:43–54.

    Article  CAS  PubMed  Google Scholar 

  34. Huntington KM, Bienvenue D, Wei Y, Bennett B, Holz RC, Pei D. 1999. Slow-binding inhibition of the aminopeptidase from Aeromonas proteolytica by peptide thiols: synthesis and spectral characterization. Biochemistry 38:15587–15596.

    Article  CAS  PubMed  Google Scholar 

  35. Stamper CC, Bienvenue DL, Bennett B, Ringe D, Petsko G, Holz RC. 2004. Spectroscopic and x-ray crystallographic characterization of bestatin bound to the aminopeptidase from Aeromonas (Vibrio) proteolytica. Biochemistry 43:9620–9628.

    CAS  Google Scholar 

  36. Bzymek K, Moulin A, Swierczek SI, Ringe D, Petsko G, Bennett B, Holz RC. 2005. Kinetic, spectroscopic, and x-ray crystallographic characterization of the functional E151H aminopeptidase from Aeromonas proteolytica. Biochemistry 44:12030–12040.

    Article  CAS  Google Scholar 

  37. Bzymek KP, Swierczek SI, Bennett B, Holz RC. 2005. Spectroscopic and thermodynamic characterization of the E151D and E151A altered leucine aminopeptidases from Aeromonas proteolytica Inorg Chem 44:8574–8580.

    Article  CAS  PubMed  Google Scholar 

  38. Breece RM, Costello A, Bennett B, Sigdel TK, Matthews ML, Tierney DL, Crowder MW. 2005. A five-coordinate metal center in Co(II)-substituted VanX. J Biol Chem 280:11074–11081.

    Article  CAS  PubMed  Google Scholar 

  39. Periyannan GR, Costello AL, Tierney DL, Yang KW, Bennett B, Crowder MW. 2006. Sequential binding of cobalt(II) to metallo-β-lactamase CcrA. Biochemistry 45:1313–1320.

    Article  CAS  PubMed  Google Scholar 

  40. Jordan PA, Bohle DS, Ramilo CA, Evans JNS. 2001. New insights into the metal center of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase. Biochemistry 40:8387–8396.

    Article  CAS  PubMed  Google Scholar 

  41. Strand KR, Karlsen S, Andersson KK. 2002. Cobalt substitution of mouse R2 ribonucleotide reductase as a model for the reactive diferrous state. J Biol Chem 37:34229–34238.

    Article  Google Scholar 

  42. Shapir N, Osborne JP, Johnson G, Sadowsky MJ, Wackett LP. 2002. Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism. J Bacteriol 184:5376–5384.

    Article  CAS  PubMed  Google Scholar 

  43. Doi Y, Lee BR, Ikeguchi M, Ohoba Y, Ikoma T, Tero-Kubota S, Yamauchi S, Takahashi K, Ichishima E. 2003. Substrate specificities of deuterolysin from aspergillus oryzae and electron paramagnetic resonance measurement of cobalt-substituted deuterolysin. Biosci Biotechnol Biochem 67:264–270.

    Article  CAS  PubMed  Google Scholar 

  44. Bienvenue DL, Gilner DM, Davis RS, Bennett B, Holz RC. 2003. Substrate specificity, metal binding properties and spectroscopic characterization of the DapE-encoded N-succinyl-L, L-diaminopimelic acid desuccinylase from Haemophilus influenzae. Biochemistry 42:10756–10763.

    Article  CAS  PubMed  Google Scholar 

  45. Davis RM, Bienvenue DL, Swierczek SI, Gilner D, Rajagopal L, Bennett B, Holz RC. 2006. Kinetic and spectroscopic characterization of the E134A- and E134D-altered DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae. J Biol Inorg Chem 11:206–216.

    Article  CAS  PubMed  Google Scholar 

  46. McGregor WC, Swierczek SI, Bennett B, Holz RC. 2005. ArgE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli contains a dinuclear metalloactive site. J Am Chem Soc 127:14100–14107.

    Article  CAS  PubMed  Google Scholar 

  47. Copik AJ, Waterson S, Swierczek SI, Bennett B, Holz RC. 2005. Both nucleophile and substrate bind to the catalytic Fe(II) center in the type-II methionyl aminopeptidase from Pyrococcus furiosus. Inorg Chem 44:1160–1162.

    Article  CAS  PubMed  Google Scholar 

  48. D'souza VM, Bennett B, Holz RC. 2000. Characterization of the divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. Biochemistry 39:3817–3826.

    Article  PubMed  Google Scholar 

  49. Copik AJ, Nocek BP, Swierczek SI, Ruebush S, Jang SB, Meng L, D'souza VM, Peters JW, Bennett B, Holz RC. 2005. EPR and x-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry 44:121–129.

    Article  CAS  PubMed  Google Scholar 

  50. D'souza VM, Brown RS, Bennett B, Holz RC. 2005. Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli. J Biol Inorg Chem 10:41–50.

    Article  PubMed  Google Scholar 

  51. Lowther WT, Matthews BW. 2000. Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477:157–167.

    CAS  PubMed  Google Scholar 

  52. Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MWW. 1998. Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180:4781–4789.

    CAS  PubMed  Google Scholar 

  53. Petrovich RM, Ruzicka FJ, Reed GH, Frey PA. 1991. Metal cofactors of lysine-2,3-aminomutase. J Biol Chem 12:7656–7660.

    Google Scholar 

  54. Gavel OY, Bursakov SA, Calvete JJ, George GN, Moura JJG, Moura I. 1998. ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio: a novel metalloprotein containing cobalt and zinc. Biochemistry 37:16225–16232.

    Article  CAS  PubMed  Google Scholar 

  55. Maret W, Vallee BL. 1993. Cobalt as probe and label of proteins. Methods Enzymol 226:52–71.

    Article  CAS  PubMed  Google Scholar 

  56. Prescott JM, Wagner FW, Holmquist B, Vallee BL. 1985. Spectral and kinetic studies of metal-substituted Aeromonas aminopeptidase: nonidentical, interacting metalbinding sites. Biochemistry 24:5350–5356.

    Article  CAS  PubMed  Google Scholar 

  57. Bennett B, Benson N, McEwan AG, Bray RC. 1994. Multiple states of the molybdenum centre of dimethylsulphoxide reductase from Rhodobacter capsulatus revealed by EPR spectroscopy. Eur J Biochem 225:321–331.

    Article  CAS  PubMed  Google Scholar 

  58. Siemann S, Badiei HR, Karanassios V, Viswanatha T, Dmitienko GI. 2006. 68Zn isotope exchange experiments reveal an unusual kinetic lability of the metal ions in the dizinc form of IMP-1 metallo-β-lactamase. Chem Commun 2006:532–534.

    Article  Google Scholar 

  59. Walsby CJ, Krepkiy D, Petering DH, Hoffman BH. 2003. Cobalt-substituted zinc finger 3 of transcription factor IIIA: interactions with cognate DNA detected by 31P ENDOR spectroscopy. J Am Chem Soc 125:7502–7503.

    Article  CAS  PubMed  Google Scholar 

  60. Mchaourab HS, Pfenninger S, Antholine WA, Felix CC, Hyde JS, Kroneck PMH. 1993. Multiquantum EPR of the mixed valence copper site in nitrous oxide reductase. Biophys J 64:1576–1579.

    Article  CAS  PubMed  Google Scholar 

  61. Hagen WR. 1982. EPR spectroscopy of iron sulfur proteins. Adv Inorg Chem 38:165–222.

    Article  Google Scholar 

  62. Hendrich MP, Debrunner PG. 1989. Integer-spin electron paramagnetic resonance of iron proteins. Biophys J 56:489–506.

    Article  CAS  PubMed  Google Scholar 

  63. Froncisz W, Hyde JS. 1982. The loop-gap resonator: a new microwave lumped circuit ESR sample structure. J Magn Reson 47:515–521.

    CAS  Google Scholar 

  64. Belford RL. 1979. Computer simulation of powder spectra, EPR Symposium, 21st Rocky Mountain Conference, Denver, Colorado.

    Google Scholar 

  65. Maurice AM. 1980. PhD dissertation. University of Illinois, Urbana.

    Google Scholar 

  66. Nilges MJ. 1979. PhD dissertation. University of Illinois, Urbana.

    Google Scholar 

  67. Hanson GR, Gates KE, Noble CJ, Griffin M, Mitchell A, Benson S. 2004. XSophe- Sophe-XeprView®: a computer simulation software suite (v. 1.1.3) for the Analysis of continuous wave EPR spectra. J Inorg Biochem 98:903–916.

    Article  CAS  PubMed  Google Scholar 

  68. Pilbrow JR. 1978. Effective g values for S = 3/2 and S = 5/2. J Magn Reson 31:479–489.

    CAS  Google Scholar 

  69. Krzystek J, Zvyagin SA, Ozarowski A, Fiedler AT, Brunold TC, Telser J. 2004. Definitive spectroscopic determination of zero-field splitting in high-spin cobalt. J Am Chem Soc 126:2148–2155.

    Article  CAS  PubMed  Google Scholar 

  70. Hagen WR, Hearshen DO, Sands RH, Dunham WR. 1985. A statistical theory for powder EPR in distributed systems. J Magn Reson 61:220–232.

    CAS  Google Scholar 

  71. Jenkins DM, Di Billio AJ, Allen MJ, Betley TA, Peters JC. 2002. Elucidation of a low spin cobalt(II) system in a distorted tetrahedral geometry. J Am Chem Soc 124:15336–15350.

    Article  CAS  PubMed  Google Scholar 

  72. Jenkins DM, Peters JC. 2005. Spin-state tuning at pseudotetrahedral d7 ions: examining the structural and magnetic phenomena of four-coordinate [BP3]CoII-X systems. J Am Chem Soc 127:7148–7165.

    Article  CAS  PubMed  Google Scholar 

  73. Lohr LL, Miller JC, Sharp RR. 1999. Electronic structure and magnetic properties of high-spin octahedral Co(II) complexes: Co(II)(Acac)2(H2O)2. J Chem Phys 111:10148–10158.

    Article  CAS  Google Scholar 

  74. Ozarowski A, Lee HM, Balch AL. 2003. Crystal environments probed by EPR spectroscopy. J Am Chem Soc 125:12606–12614.

    Article  CAS  PubMed  Google Scholar 

  75. Larrabee JA, Alessi CM, Asiedu ET, Cook JO, Hoerning KR, Klingler LJ, Okin GS, Santee SG, Volkert TL. 1997. Magnetic circular dichroism spectroscopy as a probe of geometric and electronic structure of cobalt(II)-substituted proteins: ground-state zero-field splitting as a coordination number indicator. J Am Chem Soc 119:4182–4196.

    Article  CAS  Google Scholar 

  76. Makinen MW, Maret W, Yim MB. 1983. Neutral metal-bound water is the base catalyst in liver alcohol dehydrogenase. Proc Natl Acad Sci USA 80:2584–2588.

    Article  CAS  PubMed  Google Scholar 

  77. Makinen MW, Yim MB. 1981. Coordination environment of the active-site metal ion of liver alcohol dehydrogenase. Proc Natl Acad Sci USA 78:6221–6225.

    Article  CAS  PubMed  Google Scholar 

  78. Munih P, Moulin A, Stamper CC, Bennett B, Ringe D, Petsko GA, Holz RC. 2007. X-ray crystallographic characterization of the Co(II)-substituted Tris-bound form of the aminopeptidase from Aeromonas proteolytica. J Inorg Biochem 101(8):1099–1107.

    Article  CAS  PubMed  Google Scholar 

  79. Kumar A, Periyannan GR, Narayanan B, Kittell AW, Kim JJ, Bennett B. 2007. Experimental evidence for a metallohydrolase mechanism in which the nucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus. Biochem J 403(3):527–536.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Bennett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bennett, B. (2010). EPR of Cobalt-Substituted Zinc Enzymes. In: Hanson, G., Berliner, L. (eds) Metals in Biology. Biological Magnetic Resonance, vol 29. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1139-1_10

Download citation

Publish with us

Policies and ethics