Skip to main content

Shark Novel Antigen Receptors—The Next Generation of Biologic Therapeutics?

  • Chapter
Pharmaceutical Biotechnology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 655))

Abstract

Over recent decades we have witnessed a revolution in health care as new classes of therapeutics based on natural biological molecules have become available to medical practitioners. These promised to target some of the most serious conditions that had previously evaded traditional small molecule drugs, such as cancers and to alleviate many of the concerns of patients and doctors alike regarding adverse side effects and impaired quality of life that are often associated with chemo-therapeutics. Many early ‘biologics’ were based on antibodies, Nature’s answer to invading pathogens and malignancies, derived from rodents and in many ways failed to live up to expectations. Most of these issues were subsequently negated by technological advances that saw the introduction of human or “humanized’ antibodies and have resulted in a number of commercial ‘block-busters’. Today, most of the large pharmaceutical companies have product pipelines that include an increasing proportion of biologic as opposed to small molecule compounds. The limitations of antibodies or other large protein drugs are now being realized however and ever more inventive solutions are being sought to develop equally efficacious but smaller, more soluble, more stable and less costly alternatives to broaden the range of drug-able targets and therapeutic options. The aim of this chapter is to introduce the reader to one such novel approach that seeks to exploit a unique antibody-like protein evolved by ancestral sharks over 450 M years ago and that may lead to a host of new therapeutic opportunities and help us to tackle some of the pressing clinical demands of the 21 st century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228:1315–1317.

    Article  CAS  PubMed  Google Scholar 

  2. McCafferty J, Griffith AD, Winter G et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348:552–554.

    Article  CAS  PubMed  Google Scholar 

  3. Brüggermann M, Taussig MJ. Production of human antibody repertoires in transgenic mice. Curr Opin Biotechnol 1997; 8:455–458.

    Article  Google Scholar 

  4. Greenberg AS. 1994. Ph.D dissertation. University of Miami, Miami.

    Google Scholar 

  5. Greenberg AS, Avila D, Hughes M et al. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995; 374:168–173.

    Article  CAS  PubMed  Google Scholar 

  6. Roux KH, Greenberg AS, Greene L et al. Structural analysis of the nurse shark (new) antigen receptor (NAR): Molecular convergence of NAR and unusual mammalian immunoglobulins. PNAS 1998; 95:11804–11809.

    Article  CAS  PubMed  Google Scholar 

  7. Clem LW, De Boutard F, Sigel MM. Phylogeny of immunoglobulin structure and function—II. Immunoglobulins of the nurse shark. J Immunol 1967; 99:1226–1235.

    CAS  PubMed  Google Scholar 

  8. Dooley H, Flajnik MF. Antibody repertoire development in cartilaginous fish. Dev Comp Immunol 2006; 30:43–56.

    Article  CAS  PubMed  Google Scholar 

  9. Parton A, Forest D, Kobayashi H et al. Cell and molecular biology of SAE, a cell line from the spiny dogfish Squalus acanthias. Comp Biochem Physiol 2007; 145:111–119.

    Google Scholar 

  10. Flajnik MF, Rumfelt LL. The immune system of cartilaginous fish. Curr Top Microbiol Immunol 2000; 248:249–270.

    CAS  PubMed  Google Scholar 

  11. Nuttall SD, Krishnan UV, Hattarki M et al. Isolation of the new antigen receptor from wobbegong sharks and use as a scaffold for the display of protein loop libraries. Mol Immunol 2001; 38:313–326.

    Article  CAS  PubMed  Google Scholar 

  12. Liu JL, Anderson GP, Delehanty JB et al. Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library. Mol Immunol 2007; 44:1175–1183.

    Google Scholar 

  13. Liu JL, Anderson GP, Goldman ER. Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library. BMC Biotechnology 2007; 7:78–88.

    Article  PubMed  CAS  Google Scholar 

  14. Rumfelt LL, Diaz M, Lohr RL et al. Unprecendeted multiplicity of Ig transmembrane and secretory mRNA forms in the cartilagenous fish. J Immunol 2004; 173:1129–1139.

    CAS  PubMed  Google Scholar 

  15. Diaz M, Greenberg AS, Flajnik MF. Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: Possible roles in antigen-driven reactions in the absence of germinal centers. PNAS 1998; 95:14343–14348.

    Article  CAS  PubMed  Google Scholar 

  16. Streltsov VA, Varghese JN, Carmichael JA et al. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. PNAS 2004; 101:12444–12449.

    Article  CAS  PubMed  Google Scholar 

  17. Du Pasquier L, Wilson M, Greenberg AS et al. Somatic mutation in ectothermic vertebrates: musings on selections and origins. Curr. Top Microbiol Immunol 1998; 229:199–216.

    PubMed  Google Scholar 

  18. Diaz M, Velez J, Singh M et al. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. International Immunology 1999; 11:825–833.

    Article  CAS  PubMed  Google Scholar 

  19. Stanfield RL, Dooley H, Flajnik MF. Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 2004; 305:1770–1773.

    Article  CAS  PubMed  Google Scholar 

  20. Diaz M, Stanfield RL, Greenberg AS et al. Structural analysis, selection and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics 2002; 54:501–512.

    Article  CAS  PubMed  Google Scholar 

  21. Criscitiello MF, Flajnik MF. Four primordial immunoglobulin light chain isotypes, including l and k, identified in the most primitive jawed vertebrates. Eur Immunol 2007; 37:2683–2694.

    Article  CAS  Google Scholar 

  22. Hinds KR, Litman GW. Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 1986; 320:546–551.

    Article  CAS  PubMed  Google Scholar 

  23. Flajnik MF. Comparative analyses of immunoglobulin genes: surprises and portents. Nature Rev Immunol 2002; 2:688–698.

    Article  CAS  Google Scholar 

  24. Kokubu F, Hinds K, Litman R et al. Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J 1988; 7:1979–1988.

    CAS  PubMed  Google Scholar 

  25. Lee SS, Fitch D, Flajnik MF et al. Rearrangement of immunoglobulin genes in shark germ cells. J Exp Med 2000; 191:1637–1647.

    Article  CAS  PubMed  Google Scholar 

  26. Lee SS, Freenberg A, Hsu E. Evolution and somatic diversification of immunoglobulin light chains. Curr Top Microbiol Immunol 2000; 248:285–300.

    CAS  PubMed  Google Scholar 

  27. Rumfelt LL, Avila D, Diaz M et al. A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. PNAS 2001; 98:1775–1780.

    Article  CAS  PubMed  Google Scholar 

  28. Malecek K, Brandman J, Brodsky JE et al. Somatic hypermutation and junctional diversification at Ig heavy chain loci in the nurse shark. J Immunol 2005; 175:8105–8115.

    CAS  PubMed  Google Scholar 

  29. Lee V, Huang JL, Lui MF et al. The evolution of multiple isotypic IgM heavy chain genes in the shark. J Immunol 2008; 180:7461–747.

    CAS  PubMed  Google Scholar 

  30. Bartl S, Miracle AL, Rumfelt LL et al. Terminal deoxynucleotidyl transferases from elasmobranchs reveal structural conservation within vertebrates. Immunogenetics 2003; 55:594–604.

    Article  CAS  PubMed  Google Scholar 

  31. Malecek K, Lee V, Feng W et al. Immunoglobulin heavy chain exclusion in the shark. PLoS Biology 2008; 6:1226–1242.

    Article  CAS  Google Scholar 

  32. Papermaster BW, Condie RM, Finsted JK et al. Evolution of the immune response: I The phylogenetic development of adaptive immunologic responsiveness in vertebrates. J Exp Med 1964; 199:105–130.

    Article  Google Scholar 

  33. Marchalonis J, Edelman GM. Phylogenetic origins of antibody structure. I. Multichain structure of immunoglobulins in the smooth dogfish (Mustelus canis). J Exp Med 1965; 122:601–618.

    Article  CAS  PubMed  Google Scholar 

  34. Marchalonis J, Edelman GM. Polypeptide chains of immunoglobulins from the smooth dogfish (Mustelus canis). Science 1966; 154:1567–8.

    Article  CAS  PubMed  Google Scholar 

  35. Clem LW, Small MD. Phylogeny of immunoglobulin structure and function—I. Immunoglobulins of the lemon shark. J Exp Med 1967; 125:893–920.

    Article  CAS  PubMed  Google Scholar 

  36. Morrow WJW, Harris JE, Pulsford A. Immunological responses of the dogfish (Scyliorhinus canicula L.) to cellular antigens. Acta Zoologica (Stockh.) 1982; 63:153–159.

    Article  Google Scholar 

  37. Morrow WJW, Harris JE, Davies D et al. Isolation and partial characterization of dogfish (Scyliorhinus canicula L) antibody. J Mar Biol Ass UK 1983; 63:409–418.

    Article  CAS  Google Scholar 

  38. Voss Jr EW, Sigel MM. Distribution of 19S and 7S IgM antibodies during the immune response in the nurse shark. J Immunol 1971; 106:1323–1329.

    CAS  PubMed  Google Scholar 

  39. Voss Jr EW, Sigel MM. Valence and temporal change in affinity of purified 7S and 18S nurse shark anti-2,4 dinitrophenyl antibodies. J Immunol 1972; 109:665–673.

    CAS  PubMed  Google Scholar 

  40. Dooley H, Flajnik MF. Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum. Eur J Immunol 2005; 35:936–945.

    Article  CAS  PubMed  Google Scholar 

  41. Small PA, Klapper DG, Clem LW. Half-lives, body distribution and lack of interconversion of serum 19S and 7S IgM of sharks. J Immunol 1970; 105:29–37.

    CAS  PubMed  Google Scholar 

  42. Fange R, Mattisson A. The lymphomyloid (hemopoietic) system of the atlantic nurse shark, Ginglymostoma cirratum. Biol Bull 1981; 160:240–249.

    Article  Google Scholar 

  43. Fange R, Pulsford A. Structural studies on lymphomyeloid tissues of the dogfish, Scyliorhinus canicula L. Cell and Tissue Research 1983; 230:337–351.

    Article  CAS  PubMed  Google Scholar 

  44. Miracle A, Anderson MK, Litman RT et al. Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int J Immunol 2001; 13:567–580.

    Article  CAS  Google Scholar 

  45. Rumfelt LL, McKinney EC, Taylor E et al. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic immigration and T-cell zone formation during ontogeny of the spleen. Scand. J Immunol 2002; 56:130–148.

    Article  CAS  PubMed  Google Scholar 

  46. Dooley H, Flajnik MF, Porter AJ. Selection and characterization of naturally occurring single-domain (Ig-NAR) antibody fragments from immunized sharks by phage display. Mol Immunol 2003; 40:25–33.

    Article  CAS  PubMed  Google Scholar 

  47. Shao CY, Secombes CJ, Porter AJ. Rapid isolation of IgNAR variable single-domain antibody fragments from a shark synthetic library. Mol Immunol 2007; 44:656–665.

    Article  CAS  PubMed  Google Scholar 

  48. Nuttall SD, Krishnan UV, Doughty L et al. A naturally occurring NAR variable domain binds the Kgp protease from Porphyromonas gingivalis. FEBS Letters 2002; 516:80–86.

    Article  CAS  PubMed  Google Scholar 

  49. Nuttall SD, Krishnan UV, Doughty L et al. Isolation and characterisation of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70. Eur J Biochem 2003; 270:3543–3554.

    Article  CAS  PubMed  Google Scholar 

  50. Nuttall SD, Humberstone KS, Krishnan UV et al. Selection and affinity maturation of IgNAR variable domains targeting Plasmodium falciparum AMA1. Protein 2004; 55:187–197.

    Article  CAS  Google Scholar 

  51. Winter G, Griffiths AD, Hawkins RE et al. Making Antibodies by Phage Display Technology. Annu Rev Immunol 1994; 12:433–55.

    Article  CAS  PubMed  Google Scholar 

  52. Vaughan TJ, Williams AJ, Pritchard K et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnology 1996; 14:309–314.

    Article  CAS  PubMed  Google Scholar 

  53. Dooley H, Stanfield RL, Brady RA et al. First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. PNAS 2006; 103:1846–1851.

    Article  CAS  PubMed  Google Scholar 

  54. Stanfield RL, Dooley H, Verdino P et al. Maturation of shark single-domain (IgNAR) antibodies: Evidence of induced-fit binding. J Mol Biol 2007; 367:358–372.

    Article  CAS  PubMed  Google Scholar 

  55. Adams GP, Schier R, Marshall K et al. Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br J Cancer 1998; 77:1405–12.

    CAS  PubMed  Google Scholar 

  56. Adams GP, Schier R, McCall AM et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001; 61:4750–4755.

    CAS  PubMed  Google Scholar 

  57. Nielsen UB, Adams GP, Weiner LM et al. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res 2000; 60:6434–6440.

    CAS  PubMed  Google Scholar 

  58. Kopsidas G, Roberts AS, Coia G et al. In vitro improvement of shark IgNAR antibody by QB replicase mutation and ribosome display mimics in vivo affinity maturation. Immunol Lett 2006; 15:163–168.

    Article  CAS  Google Scholar 

  59. Henderson KA, Streltsov VA, Coley AM et al. Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 2007; 15:1452–1466.

    Article  CAS  PubMed  Google Scholar 

  60. Harmsen MM, Van Solt CB, Fijten HPD et al. Passive immunization of guinea-pigs with llama single-domain antibody fragments against foot-and-mouth disease. Vet Microbiol 2007; 120:193–206.

    Article  CAS  PubMed  Google Scholar 

  61. Coppieters K, Dreier T, Silence K et al. Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 2006; 54:1856–1866.

    Article  CAS  PubMed  Google Scholar 

  62. Roovers RC, Laermans T, Huang L et al. Efficient inhibition of EGFR signalling and tumour growth by antagonistic anti-EGFR Nanobodies. Cancer Immunol Immunother 2007; 56:303–317.

    Article  CAS  PubMed  Google Scholar 

  63. Simmons DP, Abregu FA, Krishnan UV et al. Dimerisaion strategies for shark IgNAR single domain antibody fragments. J Immunol Methods 2006; 315:171–184.

    Article  CAS  PubMed  Google Scholar 

  64. Hamers-Casterman C, Atarhouch T, Muyldermans S et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363:446–448.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Charlton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Barelle, C., Gill, D.S., Charlton, K. (2009). Shark Novel Antigen Receptors—The Next Generation of Biologic Therapeutics?. In: Guzmán, C.A., Feuerstein, G.Z. (eds) Pharmaceutical Biotechnology. Advances in Experimental Medicine and Biology, vol 655. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1132-2_6

Download citation

Publish with us

Policies and ethics