Skip to main content

Tuberculosis and BCG

  • Chapter
  • First Online:
Vaccines: A Biography

Abstract

Tuberculosis occurred in humans probably as early as 8,000 bc in its sporadic form. Indeed, it is mentioned in India’s Vedas, the most sacred texts of Hinduism, and later by Hippocrates, Celse D’Aretée de Cappadoce (170 bc), and Avicene (Calmette 1923; Calmette et al. 1928). Recently, genetic studies of the tubercle bacillus have found its progenitor to come into existence possibly as early as 35,000 bc (Gutierrez et al. 2005). Tuberculosis became an epidemic problem once humans settled and crowded into permanent, food-producing social networks. Thus, Egyptian mummies from the Rhamses period (3,000 bc) showed spinal deformities consistent with tuberculosis – Pott’s disease. Hippocrates used the term “phthisis,” the Greek term for “consumption,” to describe the wasting away experienced by individuals with tuberculosis. Swollen cervical lymph nodes were known as “scrofula” or the “King’s Evil” in England (Artenstein et al. 1995). The belief that they could be healed by the King’s touch, although coincidentally true in some cases, likely had more to do with host immune responses than regal intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Zeid CI, Smith J, Grange J et al (1986) Subdivision of daughter strains of Bacille Calmette-Guérin (BCG) according to secreted protein patterns. J Gen Microbiol 132:3047–3053

    CAS  PubMed  Google Scholar 

  • Aronson JD, Santoshan M, Comstock GW et al (2004) Long-term efficacy of BCG vaccine in American Indians and Alaska natives: a 60-year follow-up study. JAMA 291:2068–2091

    Article  Google Scholar 

  • Artenstein AW (2008) New generation smallpox vaccines: a review of preclinical and clinical data. Rev Med Virol 18(4):225–235

    Article  CAS  Google Scholar 

  • Artenstein AW, Kim JH, Williams WJ et al (1995) Isolated peripheral tuberculous lymphadenitis in adults: current clinical and diagnostic issues. Clin Infect Dis 20:876–882

    CAS  PubMed  Google Scholar 

  • Barklay WR, Buzey WM, Balgard DW et al (1973) Protection of monkeys against airborne tuberculosis by aerosol vaccination with bacillus Calmette-Guérin. Am Rev Respir Dis 107:351–358

    Google Scholar 

  • Baumann S, Eddine AM, Kaufmann SHE (2006) Progress in tuberculosis vaccine development. Curr Opin Immunol 18:1–11

    Article  CAS  Google Scholar 

  • Behr MA, Small PM (1999) A historical and molecular phylogeny of BCG strains. Vaccine 17:915–922

    Article  CAS  PubMed  Google Scholar 

  • Bernard JML (1931) Le drame de Lübeck. Bull Acad Nat Méd 106:673–682

    Google Scholar 

  • Bloom BR, Fine PE (1994) The BCG experience: implication for future vaccines against tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis protection and control. ASM Press, Washington, DC

    Google Scholar 

  • Bonah C (2005) The ‘experimental stable’ of the BCG vaccine: safety, efficacy, proof, and standards, 1921–1933. Stud Hist Phil Biol Biomed Sci 36:696–721

    Google Scholar 

  • Brewer TF, Colditz GA (1995) Relationship between Bacille Calmette-Guérin (BCG) strains and the efficacy of BCG Vaccine in the prevention of tuberculosis. Clin Infect Dis 20:126–135

    CAS  PubMed  Google Scholar 

  • Brock TD (1999) Robert Koch: a life in medicine and bateriology. ASM Press, Washington, DC

    Google Scholar 

  • Burke DS (1993) Of postulates and peccadilloes: Robert Koch and vaccine (tuberculin) therapy for tuberculosis. Vaccine 11(8):795–804

    Article  CAS  PubMed  Google Scholar 

  • Bynum WF (1994) Science and the practice of medicine in the ninetheenth century. Cambridge University Press, New York

    Google Scholar 

  • Calmette A (1923) Tubercle bacillus infection and tuberculosis in man and animals. Processes of infection and resistance. (trans: Smith GH, Soper WB). Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Calmette A, Bocquet A, Nègre L (1921) Contribution a l’étude du bacille tuberculeux bilié. Ann Inst Pasteur 9:561–570

    Google Scholar 

  • Calmette A, Bocquet A, Nègre L (1926) Prémunition des nouveaux-nés contre la tuberculose par le vaccin BCG (1921–1926). Ann Institut Pasteur XL:89–120

    Google Scholar 

  • Calmette A, Bocquet A, Nègre L (1928) L’infection bacillaire et la tuberculose chez l’homme et chez les animaux. In: Calmette A et al (eds) Vaccination préventive. Masson et Cie, Paris

    Google Scholar 

  • Chung KT, Biggers CJ (2001) Albert Léon Charles Calmette (1863–1933) and the antituberculous BCG vaccination. Perspect Biol Med 44(3):349–389

    Article  Google Scholar 

  • Clemens JD, Jackie JH, Chuong JH et al (1983) The BCG controversy, methodological and statistical reappraisal. JAMA 249:2362–2369

    Article  CAS  PubMed  Google Scholar 

  • Cohn ML, Davies CL, Middlebrook G (1958) Airborne immunization against tuberculosis. Science 128:1282–1283

    Article  CAS  PubMed  Google Scholar 

  • Colditz GA, Brewer TF, Berkey CS et al (1994) Efficacy of BCG Vaccine in the prevention of tuberculosis: meta-analysis of the published literature. JAMA 271:698–702

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 395:537–544

    Google Scholar 

  • Comstock GW (1964) Community research in tuberculosis Muscogee County Georgia. Public Health Rep 79:1045–1056

    CAS  PubMed  Google Scholar 

  • Comstock GW, Woolpert SF, Livesay VT et al (1976) Tuberculosis studies in Muscogee County, Georgia: twenty-year evaluation of a community trial of BCG vaccination. Public Health Rep 91:276–280

    CAS  PubMed  Google Scholar 

  • Corbel MJ, Fruth U, Griffiths E et al (2004) Report on WHO Consultation on the charac­terisation of BCG strains, Imperial College, London 15–16 December 2003. Vaccine 22(21–22):2675–2680

    Article  CAS  PubMed  Google Scholar 

  • Daniel TM (2004) The impact of tuberculosis on civilization. Infect Dis Clin N Am 18:157–165

    Article  Google Scholar 

  • Daniel TM, Bates JH, Downes KA et al (1994) History of tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection and control. ASM Press, Washington, DC

    Google Scholar 

  • Dubos R, Dubos J (1952) Tuberculosis, man and society: the white plague. Little, Brown and Co, Boston

    Google Scholar 

  • Dubos RJ, Pierce CH (1956) Differential characteristics in vitro and in vivo of several substrains of BCG. Am Rev Tuberc 74:655–717

    CAS  PubMed  Google Scholar 

  • Fomukong NG, Dale JW, Osborn TW et al (1992) Use of gene probes based on the insertion sequence IS986 differentiate between BCG vaccine strains. J Appl Bacteriol 72:126–133

    CAS  PubMed  Google Scholar 

  • Gelinas JA (1973) Albert Calmette. The Saigon years 1891–1893: a historical review. Mil Med 138(11):730–733

    CAS  PubMed  Google Scholar 

  • Gheorghiu M (1994) BCG induced mucosal immune responses. Int J Immunopharmacol 16:435–444

    Article  CAS  PubMed  Google Scholar 

  • Gheorghiu M (1996) Antituberculosis BCG vaccine: lessons from the past. In: Plotkins S, Fantini B (eds) Vaccinia, vaccination and vaccinology: Jenner, Pasteur and their successors 87–94. Elsevier, Paris

    Google Scholar 

  • Gheorghiu M, Lagrange PH (1983) Viability, heat stability and immunogenicity of four BCG vaccines prepared from four different BCG strain. Ann Immunol (Inst Pasteur) 134C:125–147

    Article  CAS  Google Scholar 

  • Gheorghiu M, Augier J, Lagrange PH et al (1983) Maintenance and control of the French BCG strain 1173 P2 (primary and secondary seed-lots). Bull Inst Pasteur 81:281–288

    Google Scholar 

  • Gheorghiu M, Lagranderie M, Balazuc AM et al (1998) Cytotoxic activity induced by Mycobacterium bovis BCG. Dev Biol Stand Basel 92:199–208

    CAS  Google Scholar 

  • Ginsberg AM (2002) What’s new in tuberculosis vaccines. Bull WHO 6:483–488

    Google Scholar 

  • Grange JM, Biship PJ (1982) ‘Uber tuberkulose’. A tribute to Robert Koch’s discovery of the tubercle bacillus, 1882. Tubercle 63(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Gros P, Skamene E, Forget A et al (1981) Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol 127:2417–2421

    CAS  PubMed  Google Scholar 

  • Guérin C (1948) Le BCG et la prévention de la tuberculose. Rev Atomes 27:183–188

    Google Scholar 

  • Gutierrez MC, Brosse S, Brosch R et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5

    Article  PubMed  CAS  Google Scholar 

  • Hawgood BJ (2007) Albert Calmette (1863–1933) and Camille Guérin (1872–1961): the C and G of BCG vaccine. J Med Biogr 15:139–146

    PubMed  Google Scholar 

  • Huygen K, Content J, Denis O et al (1996) Immunogenicity and protective efficacy of tuberculosis DNA vaccine. Nat Med 2:893–898

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SHE, McMichael AJ (2005) Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nat Med Suppl 11(4):533–544

    Article  CAS  Google Scholar 

  • Koch R (1882) Die Ätiology der Tuberculose Berliner Klin. Wochenschrift 19:221–230

    Google Scholar 

  • Laennec T (1928) Traité de l’auscultation médiate et de maladies du poumon et du coeur In: Calmette A, Boquet A, Nègre L (eds) L’Infection bacillaire et la tuberculose chez l’homme et chez les animaux. Masson et Cie, Paris

    Google Scholar 

  • Lagranderie M, Frehel C, deChastellier C et al (1991) Cellular oxidative responses and mycobacterial growth inhibition in aerosol and intradermal BCG-immunized guinea-pigs. Biologicals 19:335–345

    Article  CAS  PubMed  Google Scholar 

  • Lagranderie M, Ravisse P, Marchal G et al (1993) BCG induced protection in guinea-pigs vaccinated and challenged via the respiratory route. Tuber Lung Dis 74:38–46

    Article  CAS  PubMed  Google Scholar 

  • Lagranderie M, Balazue AM, Gicquel B et al (1997) Oral immunization with recombinant Mycobacterium bovis BCG simian immunodeficiency virus nef induces local and systemic cytotoxic T-lymphocyte responses in mice. J Virol 71:2303–2309

    CAS  PubMed  Google Scholar 

  • Lange B (1931) Nouvelles recherches sur les causes des accidents de Lübeck. Rev Tuberc Extrait XII:1142–1170

    Google Scholar 

  • Lotte A, Wasz-Hockert O, Poisson N et al (1984) BCG complications. Estimates of the risk among vaccinated subjects and statistical analysis of their main characteristics. Adv Tuberc Res 21:107–193

    CAS  PubMed  Google Scholar 

  • Minnikin DE, Minnikin SM, Dobson G et al (1983) Mycolic acid patterns of four vaccine strains of Mycobacterium bovis BCG. J Gen Microbiol 129:889–891

    CAS  PubMed  Google Scholar 

  • Mostowy S, Tsolaki AG, Small PM et al (2003) The in vitro, evolution of BCG vaccines. Vaccine 21:4270–4274

    Article  CAS  PubMed  Google Scholar 

  • Murray JF (2004) Mycobacterium tuberculosis and the cause of consumption: from discovery to fact. Am J Respir Crit Care Med 169:1086–1088

    Article  PubMed  Google Scholar 

  • Orme IM (2005) Current progress in Tuberculosis vaccine development. Vaccine 23(17–18):2105–2108

    Article  CAS  PubMed  Google Scholar 

  • Orme IM (2006) Preclinical testing of new vaccines for tuberculosis. A comprehensive review. Vaccine 24:2–19

    Article  PubMed  Google Scholar 

  • Orme JM, Collins FM (1984) Adoptive protection of the mycobacterium tuberculosis-infected lung: dissociation between cells that passively transfer protective immunity and those that transfer delayed-type hypersensitivity. Cell Immunol 84:113–120

    Article  CAS  PubMed  Google Scholar 

  • Osborn TW (1983) Changes in BCG strains. Tubercle 64:1–13

    Article  CAS  PubMed  Google Scholar 

  • Pasteur L (1880) de l’atténuation du virus du choléra des poules. CR Acad Sci 91:673–680

    Google Scholar 

  • Pasteur L, Chamberland C, Roux E (1881) Le vaccin du charbon. CR Acad Sci 92:666–668

    Google Scholar 

  • Pym AS, Brodin P, Brosch R et al (2002) Loss of RD1 contributed to the attenuation of live tuberculosis vaccines mycobacterium bovis BCG and mycobacterium microti. Mol Microbiol 46:709–717

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal SR (1980) Routes and methods of administration. In: Rosenthal SR (ed) BCG vaccine tuberculosis-cancer. PSG Publishing Co Inc, Littleton, MA

    Google Scholar 

  • Sakula A (1983) BCG: who were Calmette and Guérin? Thorax 38:806–812

    Article  CAS  PubMed  Google Scholar 

  • Sekhuis VM, Freudenstein H, Sirks JL et al (1977) Report on results of a collaborative assay of BCG vaccines organized by IABS. J Biol Standard 5:85–109

    Article  CAS  Google Scholar 

  • Smith D, Harding GE, Chan JK et al (1979) Potency of 10 BCG vaccines evaluated by their influence on bacillemic phase of experimental airborne tuberculosis in guinea-pigs. J Biol Standard 7:179–197

    Article  CAS  Google Scholar 

  • Société des Nations (CH745) (1928) Organisation d’hygiène rapport de la conférence technique pour l’étude de la vaccination antituberculeuse par le BCG. Institut Pasteur Paris-Genève

    Google Scholar 

  • Springett VH, Sutherland J (1970) Comparison of the efficacy of liquid and freeze dried strains of BCG Vaccine in preventing tuberculosis. Br Med J 4:148–150

    Article  CAS  PubMed  Google Scholar 

  • Stead WW (1996) Epidemiology of the global distribution of tuberculosis. In: Koprowski H, Oldstone MBA (eds) Microbe hunters: then and now. Medi-Ed Press, Bloomington, IL

    Google Scholar 

  • ten Dam HG (1993) BCG vaccination In: Reichmann LB, Hershfield ES (eds) Tuberculosis: a comprehensive international approach, 1st edn. Marcel Dekker, New York

    Google Scholar 

  • Wallgren A (1928) Intradermal vaccination with BCG virus. JAMA 91:1876–1881

    Google Scholar 

  • Weil-Hallé B, Turpin R (1925) Premiers essais de vaccination antituberculeuse de l’enfant par le bacille de Calmette-Guérin (BCG). Bull et mém Soc méd Hôp 49:1589–1601

    Google Scholar 

  • WHO (1997) EPI information system global summary. WHO/EPI/Gen/98.10

    Google Scholar 

  • WHO (1979) Tuberculosis prevention trials: Madras. Trial of BCG vaccines in South India for tuberculosis prenvention. Bull WHO 57:819–827

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micheline Lagranderie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gheorghiu, M., Lagranderie, M., Balazuc, AM. (2010). Tuberculosis and BCG. In: Artenstein, A. (eds) Vaccines: A Biography. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1108-7_8

Download citation

Publish with us

Policies and ethics