Polysaccharide Vaccines

Chapter

Abstract

By the first half of the twentieth century, many of the most clinically important infectious diseases of humans, including smallpox, yellow fever, and influenza, had been controlled through the use of either live-attenuated or killed-whole cell vaccines. Certain bacterial infections, such as cholera and typhoid had been successfully addressed using killed organisms (refer to Chap. 6); others, such as tetanus and diphtheria, had been controlled using vaccines comprising immunogenic bacterial component proteins (refer to Chap. 7). Vaccinology’s subsequent “golden age,” made possible by advances in the laboratory in the late 1940s that allowed the growth of viruses ex vivo in cell culture systems (refer to Chap. 9), led directly to successful vaccines against the scourges of childhood, such as polio, measles, mumps, and rubella. Despite these apparent successes, other clinically important pathogens continued to elude a vaccine solution. It was through the study of these organisms that landmark discoveries in microbiology and immunology paved the way for a novel approach to vaccines.

Keywords

Pneumonia Influenza Polysaccharide Trypsin Pseudomonas 

Notes

Acknowledgment

The author would like to thank Dr. Emil Gotschlich for a critical review of the manuscript and for helpful suggestions

References

  1. Adams WG, Deaver KA, Cochi SL et al (1993) Decline of childhood Haemophilus influenzae type b (Hib) disease in the HIB vaccine era. JAMA 269:221–226CrossRefPubMedGoogle Scholar
  2. Alexander HE, Heidelberger M, Leidy G (1944) The protective or curative element in H. influenzae rabbit serum. Yale J Biol Med 16:425–430Google Scholar
  3. Alexander CE, Sanborn WR, Cherriere G et al (1968) Sulfadiazine-resistant group a Neisseria meningitides. Science 161(845):1019CrossRefPubMedGoogle Scholar
  4. Artenstein MS (1975) Control of meningococcal meningitis with meningococcal vaccines. Yale J Biol Med 48:197–200PubMedGoogle Scholar
  5. Artenstein MS, Gold R (1970) Current status of prophylaxis of meningococcal disease. Milit Med 135:735–739Google Scholar
  6. Artenstein MS, Gold R, Zimmerly JG et al (1970) Prevention of meningococcal disease by group C polysaccharide vaccine. N Engl J Med 282:417–420CrossRefPubMedGoogle Scholar
  7. Austrian R (1975) Random gleanings from a life with the pneumococcus. J Infect Dis 131(4):474–484PubMedGoogle Scholar
  8. Austrian R (1978) The Jeremiah Metzger lecture: of gold and pneumococci: a history of pneumococcal vaccines in South Africa. Trans Am Clin Climatol Assoc 89:141–161PubMedGoogle Scholar
  9. Austrian R (1996) Bacterial polysaccharide vaccines. In: Plotkin S, Fantini B (eds) Vaccinia, vaccination and vaccinology: Jenner, Pasteur and their successors. Elsevier, ParisGoogle Scholar
  10. Austrian R, Gold J (1964) Pneumococcal bacteremia with especial reference to bacterimic pneumococcal pneumonia. Ann Intern Med 60(5):759–776PubMedGoogle Scholar
  11. Austrian R, Douglas RM, Scheffman G et al (1976) Prevention of pneumococcal pneumonia by vaccination. Trans Assoc Am Phys 89:184–194PubMedGoogle Scholar
  12. Avery OT, Goebel WF (1929) Chemo-immunological studies on conjugated carbohydrate-proteins. II. Immunological specificity of synthetic sugar-protein antigens. http://www.jem.rupress.org. Accessed 18 May 2009Google Scholar
  13. Avery OT, MacLeod CM, McCarty M (1979) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 149(2):297–326CrossRefPubMedGoogle Scholar
  14. Bisgard KM, Kao A, Leake J et al (1998) Haemophilus influenzae invasive disease in the United States, 1994–1995: near disappearance of a vaccine-preventable childhood disease. Emerg Infect Dis 4(2):229–237CrossRefPubMedGoogle Scholar
  15. Black S, Shinefield H, Fireman B et al (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J 19:187–195CrossRefPubMedGoogle Scholar
  16. Bolan G, Broome CV, Facklam RR et al (1986) Pneumococcal vaccine efficacy in selected populations in the United States. Ann Intern Med 104:1–6PubMedGoogle Scholar
  17. Cataldo JR, Audet HH, Hesson DK et al (1968) Sulfadiazine and sulfadiazine-penicillin in mass prophylaxis of meningococcal carriers. Mil Med 133:453–457PubMedGoogle Scholar
  18. Center KJ (2007) Prevenar vaccination: review of the global data, 2006. Vaccine 25(16):3085–3089CrossRefPubMedGoogle Scholar
  19. Centers for Disease Control and Prevention (2000) Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 49:1–35Google Scholar
  20. Centers for Disease Control and Prevention (2002) Progress toward eliminating Haemophilus influenzae type b disease among infants and children-United States, 1998–2000. MMWR 51(11):234–237Google Scholar
  21. Centers for Disease Control and Prevention (2005) Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease-United States, 1998–2003. MMWR 54:893–897Google Scholar
  22. Chandran A, Patt JP, Santosham M (2008) Haemophilus influenzae vaccines. In: Plotkin SA, Orenstein WA and Offit PA (eds) Vaccines, 5th edn. Elsevier, ChinaGoogle Scholar
  23. Corner GW (1964) A history of the Rockefeller Institute: 1901–1953 origins and growth. The Rockefeller Institute Press, New YorkGoogle Scholar
  24. Danielson L, Mann E (1806) The history of a singular and very mortal disease, which lately made its appearance in Medfield-symptoms of the disorder-its progress and termination-appearances on dissection-the different methods of treatment, and what eventually proved successful. Med Agric Regist 1(5):65–69Google Scholar
  25. de Greef SC, de Melker He, Spanjaard L et al (2006) Protection from routine vaccination at the age of 14 months with meningococcal serogroup C conjugate vaccine in the Netherlands. Pediatr Infect Dis J 25:79–80CrossRefGoogle Scholar
  26. Dochez AR, Avery OT (1917) The elaboration of specific soluble substance by pneumococcus during growth. J Exp Med 26(4):477–493CrossRefPubMedGoogle Scholar
  27. Dubos RJ (1976) The professor, the institute, and DNA. The Rockefeller University Press, New YorkGoogle Scholar
  28. Ekwurzel GM, Simmons JS (1938) Studies on immunizing substances in pneumococci. VIII. Report on field tests to determine the prophylactic value of a pneumococcus antigen. Public Health Rep 53(42):1877–1894Google Scholar
  29. Eskola J, Käyhty H, Takala AK (1990) A randomized, prospective filed trial of a conjugate vaccine in the protection of infants and young children against invasive Haemophilus influenzae type b disease. N Engl J Med 323(20):1381–1387CrossRefPubMedGoogle Scholar
  30. Eskola J, Anttila M (1999) Pneumococcal conjugate vaccines. Pediatr Infect Dis J 18:543–551CrossRefPubMedGoogle Scholar
  31. Finland M, Brown JW (1938) Reactions of human subjects to the injection of purified type specific pneumococcus polysaccharides. J Clin Invest 17:479–488CrossRefGoogle Scholar
  32. Finland M, Dowling HF (1935) Cutaneous reactions and antibody response to intracutaneous injections of pneumococcus polysaccharides. J Immunol 29:285–299Google Scholar
  33. Finland M, Ruegsegger JM (1935) Immunization of human subjects with the specific carbohydrates of type III and the related type VIII pneumococcus. J Clin Invest 14:829–832CrossRefGoogle Scholar
  34. Finland M, Sutliff WD (1931) Specific cutaneous reactions and circulating antibodies in the course of lobar pneumonia. I. Cases receiving no serum therapy. J Exp Med 54:637–652CrossRefGoogle Scholar
  35. Finland M, Sutliff WD (1932) Specific antibody response of human subjects to intracutaneous injection of pneumococcus products. J Exp Med 55:853–865CrossRefGoogle Scholar
  36. Flexner S (1913) The results of the serum treatment in thirteen hundred cases of epidemic meningitis. J Exp Med 17:553–576CrossRefPubMedGoogle Scholar
  37. Fothergill LD, Wright J (1933) Influenzal meningitis: relation of age incidence to the bactericidal power of blood against the causal organism. J Immunol 24:273–284Google Scholar
  38. Francis T Jr, Tillett WS (1930) Cutaneous reactions in pneumonia. The development of antibodies following the intradermal injection of type-specific polysaccharide. J Exp Med 52:573–585CrossRefPubMedGoogle Scholar
  39. Gauld JR, Nitz RE, Hunter D (1965) Epidemiology of meningococcal meningitis at Fort Ord. Am J Epidemiol 82:56–60Google Scholar
  40. Giuliani MM, Adu-Bobie J, Comanducci M et al (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103(29):10834–10839CrossRefPubMedGoogle Scholar
  41. Gold R, Artenstein MS (1971) Meningococcal infections. 2. Field trial of group C meningococcal polysaccharide vaccine in 1969–70. Bull World Hlth Org 45:279–282Google Scholar
  42. Goldschneider I, Gotschlich EC, Artenstein MS (1969a) Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med 129(6):1307–1326CrossRefPubMedGoogle Scholar
  43. Goldschneider I, Gotschlich EC, Artenstein MS (1969b) Human immunity to the meningococcus. II. Development of natural immunity. J Exp Med 129(6):1327–1348CrossRefPubMedGoogle Scholar
  44. Gotschlich EC (2009) Personal communicationGoogle Scholar
  45. Gotschlich EC, Goldschneider I, Artenstein MS (1969a) Human immunity to the meningococcus. IV. Immunogenicity of group A and group C memingococcal polysaccharides in human volunteers. J Exp Med 129(6):1367–1384CrossRefPubMedGoogle Scholar
  46. Gotschlich EC, Goldschneider I, Artenstein MS (1969b) Human immunity to the meningococcus. V. The effect of immunization with meningococcal group C polysaccharide on the carrier state. J Exp Med 129(6):1385–1395CrossRefPubMedGoogle Scholar
  47. Gotschlich EC, Liu TY, Artenstein MS (1969) Human immunity to the meningococcus. III. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides. J Exp Med 129(6):1349–1365CrossRefPubMedGoogle Scholar
  48. Greenwood B (1999) Manson lecture. Meningococcal meningitis in Africa. Trans R Soc Trop Med Hyg 93(4):341–353CrossRefPubMedGoogle Scholar
  49. Grijalva CG, Griffin MR (2008) Population-based impact of routine infant immunization with pneumococcal conjugate vaccine in the USA. Expert Rev Vaccines 7(1):83–95CrossRefPubMedGoogle Scholar
  50. Heidelberger M (1927) Immunologically specific polysaccarides. Chem Rev 3(4):403–423CrossRefGoogle Scholar
  51. Heidelberger M (1977) A “pure” organic chemist’s downward path. Annu Rev Microbiol 31:1–12CrossRefPubMedGoogle Scholar
  52. Heidelberger M (1979) A “pure” organic chemist’s downward path: chapter 2—the years at P and S. Annu Rev Biochem 48:1–21CrossRefPubMedGoogle Scholar
  53. Heidelberger M, Avery OT (1923) The soluble specific substance of pneumococcus. J Exp Med 38:73–79CrossRefPubMedGoogle Scholar
  54. Heidelberger M, Avery OT (1924) The soluble specific substance of pneumococcus: second paper. J Exp Med 40:301–317CrossRefPubMedGoogle Scholar
  55. Heidelberger M, Kendall FE (1929) A quantitative study of the precipitin reaction between type III pneumococcus polysaccharide and purified homologous antibody. J Exp Med 50:809–823CrossRefPubMedGoogle Scholar
  56. Heidelberger M, MacLeod CM, Di Lapi M (1948) The human antibody response to simultaneous injection of six specific polysaccharides of pneumococcus. J Exp Med 88:369–372CrossRefPubMedGoogle Scholar
  57. Jódar L, Feavers IM, Salibury D et al (2002) Development of vaccines against meningococcal disease. Lancet 359:1499–1508CrossRefPubMedGoogle Scholar
  58. Kabat EA (1983) Getting started 50 years ago-experiences, perspectives, and problems of the first 21 years. Annu Rev Immunol 1:1–32CrossRefPubMedGoogle Scholar
  59. Kabat EA, Kaiser H, Sikorski H (1945) Preparation of the type-specific polysaccharide of the type I meningococcus and a study of its effectiveness as an antigen in human beings. J Exp Med 80:299–307CrossRefGoogle Scholar
  60. Klein JO, Plotkin SA (2007) Robert Austrian: 1917–2007. Clin Infect Dis 45:2–3CrossRefGoogle Scholar
  61. Kuhn TS (1996) The structure of scientific revolutions, 3rd edn. The University of Chicago Press, ChicagoGoogle Scholar
  62. Kyaw MH, Lynfield R, Schaffner W et al (2006) Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med 354(14):1455–1463CrossRefPubMedGoogle Scholar
  63. Larrauri A, Cano R, Garcia M et al (2005) Impact and effectiveness of meningococcal C conjugate vaccine following its introduction in Spain. Vaccine 23:4097–4100CrossRefPubMedGoogle Scholar
  64. Lin FYC, Ho VA, Khiem HB et al. (2001) The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N Engl J Med 344:1263–1268CrossRefPubMedGoogle Scholar
  65. MacLeod C (1957) Obituary notice: Oswald Theodore Avery, 1877–1955. J Gen Microbiol 17(2):539–549Google Scholar
  66. MacLeod CM, Hodges RG, Heidelberger M et al (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82:445–465CrossRefGoogle Scholar
  67. Malkin HM (1993) The trials and tribulations of George Miller Sternberg (1838–1915) – America’s first bacteriologist. Perspect Biol Med 36(4):666–678PubMedGoogle Scholar
  68. Morais JS, Munford RS, Risi JB et al (1974) Epidemic disease due to serogroup C Neisseria meningitidis in São Paulo, Brazil J Infect Dis 129:568–571Google Scholar
  69. Neufeld F (1902) Ueber die Agglutination der Pneumokokken und u-ber die Theorieen der Agglutination. Z Hyg Infektionskr 40:54–72CrossRefGoogle Scholar
  70. Osler W (1901) The principles and practice of medicine, 4th edn. D. Appleton and Company, New YorkGoogle Scholar
  71. Parish HJ (1965) A history of immunization. E & S Livingston Ltd., LondonGoogle Scholar
  72. Parke JC, Schneerson R, Robbins JB (1972) The attack rate, age incidence, racial distribution and case fatality rate of Haemophilus influenzae type b meningitis in Mecklenburg County, North Carolina. J Pediatr 81:765–769CrossRefPubMedGoogle Scholar
  73. Peltola H, Käyhty H, Sivonen A et al (1977) Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double blind study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics 60:730–737PubMedGoogle Scholar
  74. Peltola H, Käyhty H, Virtanen M et al (1984) Prevention of Haemophilus influenzae type b bacteremic infections with the capsular polysaccharide vaccine. 310(24):1561–1566Google Scholar
  75. Peter CG (1998) Responses of children immunized with capsular polysaccharide of Haemophilus influenzae type B, by David Smith, MD, et al, Pediatrics, 1973;52:637–644; and Haemophilus influenzae type B capsular polysaccharide vaccine in children: a double-blind field study of 100,000 vaccinees 3 months to 5 years of age in Finland, by Heikii Peltola, MD, et al. Pediatrics, 1977;60:730–737. Pediatrics 102(1 Pt 2):252–254PubMedGoogle Scholar
  76. Pittman M (1931a) The action of type-specificity Haemophilus influenzae antiserum. J Exp Med 58:683–706CrossRefGoogle Scholar
  77. Pittman M (1931b) Variation and type specificity in the bacterial species Haemophilus influenzae. J Exp Med 53:471–492CrossRefPubMedGoogle Scholar
  78. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820CrossRefPubMedGoogle Scholar
  79. Poehling KA, Talbot TR, Griffin MR et al (2006) Invasive pneumococcal disease among infants before and after introduction of pneumococcal conjugate vaccine. JAMA 295(14):1668–1674CrossRefPubMedGoogle Scholar
  80. Ramsay ME, Andrews N, Kaczmarski EB et al (2001) Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet 357:195–196CrossRefPubMedGoogle Scholar
  81. Rivers TM, Kohn LA (1921) The biological and the serological reactions of influenza bacilli producing meningitis. J Exp Med 34(5):477–494CrossRefPubMedGoogle Scholar
  82. Robbins JB, Schneerson R, Szu SC et al (1996a) Polysaccharide – protein conjugate vaccines. In: Plotkin S, Fantini B (eds) Vaccinia, vaccination and vaccinology: Jenner, Pasteur and their successors. Elsevier, ParisGoogle Scholar
  83. Robbins JB, Schneerson R, Anderson P et al (1996b) Prevention of systemic infections, especially meningitis, caused by Haemophilus influenzae type b. JAMA 276(14):1181–1185CrossRefPubMedGoogle Scholar
  84. Schiemann O, Casper W (1927) Sind die spezifisch präcipitablen Substanzen der 3 Pneumokokkentypen Haptene? Ztschr f Hyg u Infektionskr 108:220–257CrossRefGoogle Scholar
  85. Schneerson R, Robbins JB (1975) Induction of serum Haemophilus influenzae type b capsular antibodies in adult volunteers fed cross-reacting Escherichia coli 075:K100:H5. N Engl J Med 292:1093–1096CrossRefPubMedGoogle Scholar
  86. Schwentker FF, Gelman S, Long PH (1937) The treatment of meningococcal meningitis with sulphonamide: preliminary report. JAMA 108:1407–1408Google Scholar
  87. Sell HW, Merrill RE, Doyne EO et al (1972) Long-term sequelae of Haemophilus influenzae meningitis. Pediatrics 49:206–211PubMedGoogle Scholar
  88. Shapiro ED, Berg AT, Austrian R et al (1991) The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 325(21):1453–1460CrossRefPubMedGoogle Scholar
  89. Sims RV, Steinman WC, McConville JH et al (1988) The clinical effectiveness of pneumococcal vaccine in the elderly. Ann Intern Med 108:653–657PubMedGoogle Scholar
  90. Smit P, Oberholtzer D, Hayden-Smith S et al (1977) Protective efficacy of pneumococcal polysaccharide vaccines. JAMA 238:2613–2616CrossRefPubMedGoogle Scholar
  91. Smith DH, Peter G, Ingram DL et al (1973) Responses of children immunized with the capsular polysaccharide of Haemophilus influenzae. Pediatrics 52:637–641PubMedGoogle Scholar
  92. Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369:2196–2210CrossRefPubMedGoogle Scholar
  93. Sternberg GM (1897) The etiology of croupous pneumonia. Natl Med Rev VII(7):175–177Google Scholar
  94. Sutton A, Schneerson R, Kendall-Morris S et al (1982) Differential complement resistance mediates virulence of Haemophilus influenzae type b. Infect Immun 35:95–104PubMedGoogle Scholar
  95. Vieusseuz M (1805) Mémoire: Sur la maladie qui a régné a geneve au. De Medecine, Chirurgie, Pharmacie XIV:163–182Google Scholar
  96. Wahdan MW, Rizk F, El-Akkad AM et al (1973) A controlled field trial of a serogroup A meningococcal polysaccharide vaccine. Bull World Hlth Org 48:667Google Scholar
  97. Weichselbaum A (1887) Ueber die Aetiologie der akuten meningitis cerebro-spinalis. Fortschr Med 5:573–583Google Scholar
  98. Woodward TE (ed) (1994) The armed forces epidemiological board: the histories of the commissions. Borden Institute, Washington, DCGoogle Scholar
  99. Wright AE, Morgan WP, Cantab MB et al (1914a) Observations on prophylactic inoculation against pneumococcus infections and the results which have been achieved by it. Lancet i:1–10CrossRefGoogle Scholar
  100. Wright AE, Morgan WP, Cantab MB et al (1914b) Observations on prophylactic inoculation against pneumococcus infections and the results which have been achieved by it. Lancet i:87–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Medicine, Center for Biodefense and Emerging Pathogens, Memorial Hospital of Rhode IslandThe Warren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations