Skip to main content

Oncogene-Induced Senescence (OIS) as a Cellular Response to Oncogenic Stresses

  • Chapter
  • First Online:
Cellular Senescence and Tumor Suppression

Abstract

Oncogene-Induced Senescence (OIS) is a tumor suppressor mechanism that prevents the expansion of cells bearing activated oncogenes. Two major tumor suppressors control OIS: p53 and Rb. These tumor suppressors are not activated to regulate senescence by normal growth signals, but by stress signals caused by activated oncogenes. The activation of p53 by oncogenes involves reactive oxygen species (oxidative stress), DNA replication stress and the DNA damage response. The activation of Rb during OIS is less understood, but it involves Cyclin-Dependent Kinases (CDKs) inhibitors such as p21 and p16INK4a or the downregulation of CDK4, due to a decrease in Myc functions. Rb also controls the formation of heterochromatin in senescent cells, and this process has been linked to p16INK4a, p21 and the promyelocytic leukemia protein PML. The process of OIS occurs in both rodents and humans, but its control by p53 and Rb differ between these species. In rodents, senescence can be inactivated by disabling the p53 or the Rb pathway. In contrast, human cells can organize p53 or Rb-independent senescence. OIS is initiated as a cell autonomous process in response to oncogenes, but it also involves secreted cytokines. The mechanistic understanding of OIS suggests novel strategies to treat human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARF:

Refers to p19ARF in mice and p14ARF in humans. The ARF open reading frame overlaps with the p16INK4a reading frame. Hence, ARF is an abbreviation of alternative reading frame

CKI:

Cyclin-dependent kinase inhibitor

DDR:

DNA damage response

OIS:

Oncogene-induced senescence

ROS:

Reactive oxygen species

SAHF:

Senescence-associated heterochromatin foci

References

  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Google Scholar 

  • Sedivy JM (1998) Can ends justify the means? Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proc Natl Acad Sci USA 95:9078–9081

    CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    CAS  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    CAS  PubMed  Google Scholar 

  • Vaziri H, Benchimol S (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8:279–282

    CAS  PubMed  Google Scholar 

  • Wei S, Wei S, Sedivy JM (1999) Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. Cancer Res 59:1539–1543

    CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    CAS  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436:642

    CAS  PubMed  Google Scholar 

  • Dankort D, Filenova E, Collado M, Serrano M, Jones K et al (2007) A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21:379–384

    CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    CAS  PubMed  Google Scholar 

  • Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE et al (2007) Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9:493–505

    CAS  PubMed  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T et al (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95:496–505

    CAS  PubMed  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT et al (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–472

    CAS  PubMed  Google Scholar 

  • Ha L, Ichikawa T, Anver M, Dickins R, Lowe S et al (2007) ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc Natl Acad Sci USA 104:10968–10973

    CAS  PubMed  Google Scholar 

  • Mallette FA, Ferbeyre G (2007) The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle 6:1831–1836

    CAS  PubMed  Google Scholar 

  • Tront JS, Hoffman B, Liebermann DA (2006) Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res 66:8448–8454

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    CAS  PubMed  Google Scholar 

  • Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P et al (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711

    CAS  PubMed  Google Scholar 

  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:2997–3007

    Google Scholar 

  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME et al (2002) Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22:3497–3508

    CAS  PubMed  Google Scholar 

  • Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C et al (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14:2015–2027

    CAS  PubMed  Google Scholar 

  • Atadja P, Wong H, Garkavtsev I, Veillette C, Riabowol K (1995) Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci USA 92:8348–8352

    CAS  PubMed  Google Scholar 

  • Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D et al (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104

    CAS  PubMed  Google Scholar 

  • Garkavtsev I, Riabowol K (1997) Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol Cell Biol 17:2014–2019

    CAS  PubMed  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M et al (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014

    CAS  PubMed  Google Scholar 

  • Webley K, Bond JA, Jones CJ, Blaydes JP, Craig A et al (2000) Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol Cell Biol 20:2803–2808

    CAS  PubMed  Google Scholar 

  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M et al (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210

    CAS  PubMed  Google Scholar 

  • Mallette FA, Gaumont-Leclerc MF, Ferbeyre G (2007a) The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21:43–48

    CAS  PubMed  Google Scholar 

  • Mallette FA, Gaumont-Leclerc MF, Huot G, Ferbeyre G (2007b) Myc down-regulation as a mechanism to activate the Rb pathway in STAT5A-induced senescence. J Biol Chem 282:34938–34944

    CAS  PubMed  Google Scholar 

  • de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G et al (1998) E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12:2434–2442

    PubMed  Google Scholar 

  • Garkavtsev I, Kazarov A, Gudkov A, Riabowol K (1996) Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet 14:415–420

    CAS  PubMed  Google Scholar 

  • Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM et al (1998) The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature 391:295–298

    CAS  PubMed  Google Scholar 

  • Brown JP, Wenyi W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    CAS  PubMed  Google Scholar 

  • Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    CAS  PubMed  Google Scholar 

  • de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP et al (2004) PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13:523–535

    PubMed  Google Scholar 

  • Bulavin DV, Kovalsky O, Hollander MC, Fornace AJ Jr (2003) Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol Cell Biol 23:3859–3871

    CAS  PubMed  Google Scholar 

  • Swarbrick A, Roy E, Allen T, Bishop JM (2008) Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci USA 105:5402–5407

    CAS  PubMed  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL et al (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433

    CAS  PubMed  Google Scholar 

  • Palmero I, Pantoja C, Serrano M (1998) p19ARF links the tumour suppressor p53 to Ras [letter]. Nature 395:125–126

    CAS  PubMed  Google Scholar 

  • Zindy F, Williams RT, Baudino TA, Rehg JE, Skapek SX et al (2003) Arf tumor suppressor promoter monitors latent oncogenic signals in vivo. Proc Natl Acad Sci USA 100:15930–15935

    CAS  PubMed  Google Scholar 

  • Wei W, Hemmer RM, Sedivy JM (2001) Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 21:6748–6757

    CAS  PubMed  Google Scholar 

  • Cheng K, Grisendi S, Clohessy JG, Majid S, Bernardi R et al (2007) The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence. Oncogene 26:7391–7400

    CAS  PubMed  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    PubMed  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    CAS  PubMed  Google Scholar 

  • Jung MS, Yun J, Chae HD, Kim JM, Kim SC et al (2001) p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 20:5818–5825

    CAS  PubMed  Google Scholar 

  • Petrenko O, Zaika A, Moll UM (2003) deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Mol Cell Biol 23:5540–5555

    CAS  PubMed  Google Scholar 

  • Chen QM, Liu J, Merrett JB (2000) Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 347:543–551

    CAS  PubMed  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S et al (2000) Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14:3037–3050

    CAS  PubMed  Google Scholar 

  • Peeper DS, Dannenberg JH, Douma S, te Riele H, Bernards R (2001) Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nat Cell Biol 3:198–203

    CAS  PubMed  Google Scholar 

  • Rowland BD, Denissov SG, Douma S, Stunnenberg HG, Bernards R et al (2002) E2F transcriptional repressor complexes are critical downstream targets of p19(ARF)/p53-induced proliferative arrest. Cancer Cell 2:55–65

    CAS  PubMed  Google Scholar 

  • Maehara K, Yamakoshi K, Ohtani N, Kubo Y, Takahashi A et al (2005) Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. J Cell Biol 168:553–560

    CAS  PubMed  Google Scholar 

  • Sebastian T, Malik R, Thomas S, Sage J, Johnson PF (2005) C/EBPbeta cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. EMBO J 24:3301–3312

    CAS  PubMed  Google Scholar 

  • Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222

    CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    CAS  PubMed  Google Scholar 

  • Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A et al (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514

    CAS  PubMed  Google Scholar 

  • Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79:551–555

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163

    CAS  PubMed  Google Scholar 

  • Stein GH, Drullinger LF, Soulard A, Dulic V (1999) Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19:2109–2117

    CAS  PubMed  Google Scholar 

  • Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J et al (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22

    CAS  PubMed  Google Scholar 

  • Wei W, Jobling WA, Chen W, Hahn WC, Sedivy JM (2003) Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol Cell Biol 23:2859–2870

    CAS  PubMed  Google Scholar 

  • Stein GH, Beeson M, Gordon L (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249:666–669

    CAS  PubMed  Google Scholar 

  • Dulic V, Drullinger LF, Lees E, Reed SI, Stein GH (1993) Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes. Proc Natl Acad Sci USA 90:11034–11038

    CAS  PubMed  Google Scholar 

  • Hara E, Smith R, Parry D, Tahara H, Stone S et al (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16:859–867

    CAS  PubMed  Google Scholar 

  • Vogt M, Haggblom C, Yeargin J, Christiansen-Weber T, Haas M (1998) Independent induction of senescence by p16INK4a and p21CIP1 in spontaneously immortalized human fibroblasts. Cell Growth Differ 9:1923–1930

    Google Scholar 

  • Uhrbom L, Nister M, Westermark B (1997) Induction of senescence in human malignant glioma cells by p16INK4a. Oncogene 15:505–514

    CAS  PubMed  Google Scholar 

  • McConnell BB, Starborg M, Brookes S, Peters G (1998) Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol 8:351–354

    CAS  PubMed  Google Scholar 

  • Malumbres M, Perez De Castro I, Hernandez MI, Jimenez M, Corral T et al (2000) Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol 20:2915–2925

    CAS  PubMed  Google Scholar 

  • Carnero A, Hudson JD, Price CM, Beach DH (2000) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization [see comments]. Nat Cell Biol 2:148–155

    CAS  PubMed  Google Scholar 

  • Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M et al (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409:1067–1070

    CAS  PubMed  Google Scholar 

  • Brookes S, Rowe J, Ruas M, Llanos S, Clark PA et al (2002) INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J 21:2936–2945

    CAS  PubMed  Google Scholar 

  • Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83–86

    CAS  PubMed  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH et al (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91

    CAS  PubMed  Google Scholar 

  • Benanti JA, Galloway DA (2004) Normal human fibroblasts are resistant to RAS-induced senescence. Mol Cell Biol 24:2842–2852

    CAS  PubMed  Google Scholar 

  • Takaoka M, Harada H, Deramaudt TB, Oyama K, Andl CD et al (2004) Ha-Ras(G12V) induces senescence in primary and immortalized human esophageal keratinocytes with p53 dysfunction. Oncogene 23:6760–6768

    CAS  PubMed  Google Scholar 

  • Sarkar D, Leszczyniecka M, Kang DC, Lebedeva IV, Valerie K et al (2003) Down-regulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 278:24542–24551

    CAS  PubMed  Google Scholar 

  • Wu CH, van Riggelen J, Yetil A, Fan AC, Bachireddy P et al (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci USA 104:13028–13033

    CAS  PubMed  Google Scholar 

  • Guney I, Wu S, Sedivy JM (2006) Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci USA 103:3645–3650

    CAS  PubMed  Google Scholar 

  • Chan HM, Narita M, Lowe SW, Livingston DM (2005) The p400 E1A-associated protein is a novel component of the p53 –> p21 senescence pathway. Genes Dev 19:196–201

    CAS  PubMed  Google Scholar 

  • Mallette FA, Goumard S, Gaumont-Leclerc MF, Moiseeva O, Ferbeyre G (2004) Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 23:91–99

    CAS  PubMed  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    CAS  PubMed  Google Scholar 

  • Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M et al (2007a) Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 27:2452–2465

    CAS  PubMed  Google Scholar 

  • Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R et al (2007b) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 27:183–196

    CAS  PubMed  Google Scholar 

  • Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR (2008) HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453:682–686

    CAS  PubMed  Google Scholar 

  • Smogorzewska A, de Lange T (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J 21:4338–4348

    CAS  PubMed  Google Scholar 

  • Rangarajan A, Weinberg RA (2003) Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 3:952–959

    CAS  PubMed  Google Scholar 

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW et al (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468

    CAS  PubMed  Google Scholar 

  • Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B et al (2002) Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 22:2111–2123

    CAS  PubMed  Google Scholar 

  • Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6:171–183

    CAS  PubMed  Google Scholar 

  • Gaumont-Leclerc MF, Mukhopadhyay UK, Goumard S, Ferbeyre G (2004) PEA-15 is inhibited by adenovirus E1A and plays a role in ERK nuclear export and Ras-induced senescence. J Biol Chem 279:46802–46809

    CAS  PubMed  Google Scholar 

  • Deng Q, Li Y, Tedesco D, Liao R, Fuhrmann G et al (2005) The ability of E1A to rescue ras-induced premature senescence and confer transformation relies on inactivation of both p300/CBP and Rb family proteins. Cancer Res 65:8298–8307

    CAS  PubMed  Google Scholar 

  • Dimri GP, Itahana K, Acosta M, Campisi J (2000) Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol 20:273–285

    CAS  PubMed  Google Scholar 

  • Voorhoeve PM, Agami R (2003) The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4:311–319

    CAS  PubMed  Google Scholar 

  • Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17:1583–1592

    CAS  PubMed  Google Scholar 

  • Sasaki M, Ikeda H, Sato Y, Nakanuma Y (2008) Proinflammatory cytokine-induced cellular senescence of biliary epithelial cells is mediated via oxidative stress and activation of ATM pathway: a culture study. Free Radic Res 42:625–632

    CAS  PubMed  Google Scholar 

  • Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:363–374

    CAS  PubMed  Google Scholar 

  • Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    CAS  PubMed  Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    CAS  PubMed  Google Scholar 

  • Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945

    CAS  PubMed  Google Scholar 

  • Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26:1306–1316

    CAS  PubMed  Google Scholar 

  • Varmus HE (1984) The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612

    CAS  PubMed  Google Scholar 

  • Deng Q, Liao R, Wu BL, Sun P (2004) High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts. J Biol Chem 279:1050–1059

    CAS  PubMed  Google Scholar 

  • Catalano A, Rodilossi S, Caprari P, Coppola V, Procopio A (2005) 5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation. EMBO J 24:170–179

    CAS  PubMed  Google Scholar 

  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS et al (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940

    CAS  PubMed  Google Scholar 

  • Nicke B, Bastien J, Khanna SJ, Warne PH, Cowling V et al (2005) Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol Cell 20:673–685

    CAS  PubMed  Google Scholar 

  • Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3:420–425

    CAS  PubMed  Google Scholar 

  • Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37:5633–5642

    CAS  PubMed  Google Scholar 

  • Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773

    CAS  PubMed  Google Scholar 

  • Wu C, Miloslavskaya I, Demontis S, Maestro R, Galaktionov K (2004) Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 432:640–645

    CAS  PubMed  Google Scholar 

  • Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92:4337–4341

    CAS  PubMed  Google Scholar 

  • Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H et al (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8:1291–1297

    CAS  PubMed  Google Scholar 

  • Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H et al (2004) Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J 23:212–220

    CAS  PubMed  Google Scholar 

  • Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 12:509–516

    CAS  PubMed  Google Scholar 

  • Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM et al (2006) Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8:1053–1063

    CAS  PubMed  Google Scholar 

  • Ozcan U, Ozcan L, Yilmaz E, Duvel K, Sahin M et al (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29:541–551

    CAS  PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    CAS  PubMed  Google Scholar 

  • Huang HJ, Yee JK, Shew JY, Chen PL, Bookstein R et al (1988) Suppression of the neoplastic phenotype by replacement of the Rb gene in human cancer cells. Science 242:1563–1566

    CAS  PubMed  Google Scholar 

  • Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI et al (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70:993–1006

    CAS  PubMed  Google Scholar 

  • Xu HJ, Zhou Y, Ji W, Perng GS, Kruzelock R et al (1997) Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition. Oncogene 15:2589–2596

    CAS  PubMed  Google Scholar 

  • Tiemann F, Hinds PW (1998) Induction of DNA synthesis and apoptosis by regulated inactivation of a temperature-sensitive retinoblastoma protein. EMBO J 17:1040–1052

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E et al (2002) A senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy. Cell 109:335–346

    CAS  PubMed  Google Scholar 

  • Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A et al (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767

    CAS  PubMed  Google Scholar 

  • Jackson JG, Pereira-Smith OM (2006) Primary and compensatory roles for RB family members at cell cycle gene promoters that are deacetylated and downregulated in doxorubicin-induced senescence of breast cancer cells. Mol Cell Biol 26:2501–2510

    CAS  PubMed  Google Scholar 

  • Wang W, Kim SH, El-Deiry WS (2006) Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts. Proc Natl Acad Sci USA 103:11003–11008

    CAS  PubMed  Google Scholar 

  • Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr et al (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296:530–534

    CAS  PubMed  Google Scholar 

  • Zou X, Ray D, Aziyu A, Christov K, Boiko AD et al (2002) Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev 16:2923–2934

    CAS  PubMed  Google Scholar 

  • Baughn LB, Di Liberto M, Wu K, Toogood PL, Louie T et al (2006) A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res 66:7661–7667

    CAS  PubMed  Google Scholar 

  • Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP et al (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14:79–89

    CAS  PubMed  Google Scholar 

  • Damalas A, Kahan S, Shtutman M, Ben-Ze’ev A, Oren M (2001) Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J 20:4912–4922

    CAS  PubMed  Google Scholar 

  • Saegusa M, Hashimura M, Kuwata T, Hamano M, Okayasu I (2004) Beta-catenin simultaneously induces activation of the p53–p21WAF1 pathway and overexpression of cyclin D1 during squamous differentiation of endometrial carcinoma cells. Am J Pathol 164:1739–1749

    CAS  PubMed  Google Scholar 

  • Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T et al (2008) Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol 28:1713–1723

    CAS  PubMed  Google Scholar 

  • Rincheval V, Renaud F, Lemaire C, Godefroy N, Trotot P et al (2002) Bcl-2 can promote p53-dependent senescence versus apoptosis without affecting the G1/S transition. Biochem Biophys Res Commun 298:282–288

    CAS  PubMed  Google Scholar 

  • Tombor B, Rundell K, Oltvai ZN (2003) Bcl-2 promotes premature senescence induced by oncogenic Ras. Biochem Biophys Res Commun 303:800–807

    CAS  PubMed  Google Scholar 

  • Crescenzi E, Palumbo G, Brady HJ (2003) Bcl-2 activates a programme of premature senescence in human carcinoma cells. Biochem J 375:263–274

    CAS  PubMed  Google Scholar 

  • Trost TM, Lausch EU, Fees SA, Schmitt S, Enklaar T et al (2005) Premature senescence is a primary fail-safe mechanism of ERBB2-driven tumorigenesis in breast carcinoma cells. Cancer Res 65:840–849

    CAS  PubMed  Google Scholar 

  • Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD et al (2000) Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J 19:5762–5771

    CAS  PubMed  Google Scholar 

  • Lazzerini Denchi E, Attwooll C, Pasini D, Helin K (2005) Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25:2660–2672

    PubMed  Google Scholar 

  • Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J et al (2003) Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 17:1569–1574

    CAS  PubMed  Google Scholar 

  • Hogan C, Hutchison C, Marcar L, Milne D, Saville M et al (2008) Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem 283:18012–18023

    CAS  PubMed  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:2997–3007

    CAS  PubMed  Google Scholar 

  • Olsen CL, Gardie B, Yaswen P, Stampfer MR (2002) Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 21:6328–6339

    CAS  PubMed  Google Scholar 

  • Wei S, Sedivy JM (1999) Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. Cancer Res 59:1539–1543

    CAS  PubMed  Google Scholar 

  • Spyridopoulos I, Isner JM, Losordo DW (2002) Oncogenic ras induces premature senescence in endothelial cells: role of p21(Cip1/Waf1). Basic Res Cardiol 97:117–124

    CAS  PubMed  Google Scholar 

  • Minamino T, Yoshida T, Tateno K, Miyauchi H, Zou Y et al (2003) Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation 108:2264–2269

    CAS  PubMed  Google Scholar 

  • Bihani T, Mason DX, Jackson TJ, Chen SC, Boettner B et al (2004) Differential oncogenic Ras signaling and senescence in tumor cells. Cell Cycle 3:1201–1207

    CAS  PubMed  Google Scholar 

  • Cote M, Miller AD, Liu SL (2007) Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence. Biochem Biophys Res Commun 360:219–225

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

GF is a senior FRSQ fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Ferbeyre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bourdeau, V., Ferbeyre, G. (2010). Oncogene-Induced Senescence (OIS) as a Cellular Response to Oncogenic Stresses. In: Adams, P., Sedivy, J. (eds) Cellular Senescence and Tumor Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1075-2_3

Download citation

Publish with us

Policies and ethics