Advertisement

Telomere Biology and Biochemistry

  • Laura Gardano
  • Lea Harrington
Chapter

Abstract

In this chapter, beyond some general background about the structure of the telomere and its associated proteins, we highlight the selected topics emerging in the field. The review can be summarized into two principal themes: firstly that the characterization of proteins/activities associated with the enzyme telomerase has revealed important regulatory mechanisms of telomere maintenance; and secondly, that protein complexes involved in the DNA damage response (DDR) localize at the telomere, and are essential to initiate a signaling cascade for cell cycle arrest or apoptosis when telomere “damage” is sensed. Precisely, how the DDR is suppressed at a “functional” telomere is still an active area of investigation. Finally, telomeric and subtelomeric regions possess a characteristic heterochromatin organization, and the regulation of DNA and histone methylation appears important in the regulation of the telomere position effect, telomere stability, recombination processes, and transcription into telomeric RNA (TERRA). The presence of TERRA is an exciting recent finding, and constitutes an additional new regulatory element in telomere homeostasis.

Keywords

Telomere Length Telomere Maintenance Nijmegen Breakage Syndrome Telomere Elongation Reverse Transcriptase Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ALT

Alternative lengthening of telomeres

APB

ALT related promyelocytic bodies

ATM

Ataxia-telangiectasia mutated

ATR

Ataxia-telangiectasia related

CR

Conserved regions

CS

Conserved sequence

DAT

Dissociates activity telomerase

DDR

DNA damage response

DKC

Dyskeratosis congenita

DNA-PK

DNA protein kinase

DNMT

DNA methyl transferases

DSB

Double strand break

FISH

Fluorescence in situ hybridization

FRET

Fluorescence resonance energy transfer

HMT

Histones methyl transferase

HR

Homologous recombination

MEF

Mouse embryonic fibroblast

NBS

Nijmegen breakage syndrome

NMD

Nonsense mediated decay

OB

Oligonucleotide binding

PD

Population doubling

PIKK

Phosphoinositide 3-kinase-related kinase

PML

Promyelocitic bodies

POT

Protection of telomere

Rap

Repressor activator protein

RBD

RNA binding domain

RNP

Ribonucleoprotein

RT

Reverse transcriptase

Sir

Silent information regulator

TEBP

Telomere end-binding protein

TEP

Telomere associated protein

TERC

Telomerase RNA component

TERT

Telomere reverse transcriptase

TIF

Telomere dysfunction induced foci

TIN

Trf1 interacting protein

TPE

Telomere position effect

TPP1

TPP1–PTOP–PIP1

TR

Telomerase RNA

TRF

Telomere repeat factor

Notes

Acknowledgment

We wish to thank Jennifer Dorrens, Catherine Clark and Helen Pickersgill for critical reading of this chapter.

References

  1. Allshire RC, Dempster M et al (1989) Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 17(12):4611–4627PubMedGoogle Scholar
  2. Andegeko Y, Moyal L et al (2001) Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem 276(41):38224–38230PubMedGoogle Scholar
  3. Anderson DE, Trujillo KM et al (2001) Structure of the Rad50 x Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J Biol Chem 276(40):37027–37033PubMedGoogle Scholar
  4. Arai K, Masutomi K et al (2002) Two independent regions of human telomerase reverse transcriptase are important for its oligomerization and telomerase activity. J Biol Chem 277(10):8538–8544PubMedGoogle Scholar
  5. Ashley T, Wagenaar EB (1974) Telomeric associations of gametic and somatic chromsomes in diploid and autotetraploid Ornithogalum virens. Can J Genet Cytol 16:61–76Google Scholar
  6. Atadja P, Wong H et al (1995) Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci USA 92(18):8348–8352PubMedGoogle Scholar
  7. Avery OT, MacLeod CM et al (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158PubMedGoogle Scholar
  8. Aylon Y, Liefshitz B et al (2004) The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J 23(24):4868–4875PubMedGoogle Scholar
  9. Azzalin CM, Reichenbach P et al (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318(5851):798–801PubMedGoogle Scholar
  10. Bailey SM, Brenneman MA et al (2004) The kinase activity of DNA-PK is required to protect mammalian telomeres. DNA Repair (Amst) 3(3):225–233Google Scholar
  11. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506PubMedGoogle Scholar
  12. Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292(5519):1171–1175PubMedGoogle Scholar
  13. Baur JA, Zou Y et al (2001) Telomere position effect in human cells. Science 292(5524):2075–2077PubMedGoogle Scholar
  14. Beattie TL, Zhou W et al (1998) Reconstitution of human telomerase activity in vitro. Curr Biol 8(3):177–180PubMedGoogle Scholar
  15. Beattie TL, Zhou W et al (2001) Functional multimerization of the human telomerase reverse transcriptase. Mol Cell Biol 21(18):6151–6160PubMedGoogle Scholar
  16. Benetti R, Garcia-Cao M et al (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39(2):243–250PubMedGoogle Scholar
  17. Benetti R, Gonzalo S et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(3):268–279PubMedGoogle Scholar
  18. Bertuch AA, Lundblad V (2003) The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol Cell Biol 23(22):8202–8215PubMedGoogle Scholar
  19. Bianchi A, Shore D (2008) How telomerase reaches its end: Mechanism of telomerase regulation by the telomeric complex. Mol Cell 31(2):153–165PubMedGoogle Scholar
  20. Bianchi A, Stansel RM et al (1999) TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J 18(20):5735–5744PubMedGoogle Scholar
  21. Blackburn EH (1990) Telomeres and their synthesis. Harvey Lect 86:1–18PubMedGoogle Scholar
  22. Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120(1):33–53PubMedGoogle Scholar
  23. Blasco MA, Funk W et al (1995) Functional characterization and developmental regulation of mouse telomerase RNA. Science 269(5228):1267–1270PubMedGoogle Scholar
  24. Bodnar AG, Ouellette M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352PubMedGoogle Scholar
  25. Boulton SJ, Jackson SP (1996a) Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 24(23):4639–4648PubMedGoogle Scholar
  26. Boulton SJ, Jackson SP (1996b) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 15(18):5093–5103PubMedGoogle Scholar
  27. Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17(6):1819–1828PubMedGoogle Scholar
  28. Bressan DA, Baxter BK et al (1999) The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 19(11):7681–7687PubMedGoogle Scholar
  29. Broccoli DSA, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 997(2):231–235Google Scholar
  30. Brock GJ, Charlton J et al (1999) Densely methylated sequences that are preferentially localized at telomere-proximal regions of human chromosomes. Gene 240(2):269–277PubMedGoogle Scholar
  31. Bryan TM, Reddel RR (1997) Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer 33(5):767–773PubMedGoogle Scholar
  32. Bryan TM, Englezou A et al (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14(17):4240–4248PubMedGoogle Scholar
  33. Bryan TM, Englezou A et al (1997a) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3(11):1271–1274PubMedGoogle Scholar
  34. Bryan TM, Marusic L et al (1997b) The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit. Hum Mol Genet 6(6):921–926PubMedGoogle Scholar
  35. Bryan TM, Goodrich KJ et al (2000) Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase. Mol Cell 6(2):493–499PubMedGoogle Scholar
  36. Bryan TM, Goodrich KJ et al (2003) Tetrahymena telomerase is active as a monomer. Mol Biol Cell 14(12):4794–4804PubMedGoogle Scholar
  37. Buhler M, Moazed D (2007) Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14(11):1041–1048PubMedGoogle Scholar
  38. Capper R, Britt-Compton B et al (2007) The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev 21(19):2495–2508PubMedGoogle Scholar
  39. Cech TR, Lingner J (1997) Telomerase and the chromosome end replication problem. Ciba Found Symp 211:20–28 discussion 28–34PubMedGoogle Scholar
  40. Chai W, Ford LP et al (2002) Human Ku70/80 associates physically with telomerase through interaction with hTERT. J Biol Chem 277(49):47242–47247PubMedGoogle Scholar
  41. Chai W, Sfeir AJ et al (2006) The involvement of the Mre11/Rad50/Nbs1 complex in the generation of G-overhangs at human telomeres. EMBO Rep 7(2):225–230PubMedGoogle Scholar
  42. Chang M, Lingner J (2008) Cell signaling. Tel2 finally tells one story. Science 320(5872):60–61PubMedGoogle Scholar
  43. Chen JL, Greider CW (2003a) Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility. EMBO J 22(2):304–314PubMedGoogle Scholar
  44. Chen JL, Greider CW (2003b) Template boundary definition in mammalian telomerase. Genes Dev 17(22):2747–2752PubMedGoogle Scholar
  45. Chen JL, Greider CW (2004) Telomerase RNA structure and function: Implications for dyskeratosis congenita. Trends Biochem Sci 29(4):183–192PubMedGoogle Scholar
  46. Chen JL, Greider CW (2005) Functional analysis of the pseudoknot structure in human telomerase RNA. Proc Natl Acad Sci USA 102(23):8080–8085 discussion 8077–8079PubMedGoogle Scholar
  47. Chen JL, Blasco MA et al (2000) Secondary structure of vertebrate telomerase RNA. Cell 100(5):503–514PubMedGoogle Scholar
  48. Chen YJ, Hakin-Smith V et al (2006) Association of mutant TP53 with alternative lengthening of telomeres and favorable prognosis in glioma. Cancer Res 66(13):6473–6476PubMedGoogle Scholar
  49. Chen Y, Yang Y et al (2008) A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319(5866):1092–1096PubMedGoogle Scholar
  50. Chong L, van Steensel B et al (1995) A human telomeric protein. Science 270(5242):1663–1667PubMedGoogle Scholar
  51. Classen S, Ruggles JA et al (2001) Crystal structure of the N-terminal domain of Oxytricha nova telomere end-binding protein alpha subunit both uncomplexed and complexed with telomeric ssDNA. J Mol Biol 314(5):1113–1125PubMedGoogle Scholar
  52. Cohen SB, Graham ME et al (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315(5820):1850–1853PubMedGoogle Scholar
  53. Colgin LM, Baran K et al (2003) Human POT1 facilitates telomere elongation by telomerase. Curr Biol 13(11):942–946PubMedGoogle Scholar
  54. Collins K (1999) Ciliate telomerase biochemistry. Annu Rev Biochem 68:187–218PubMedGoogle Scholar
  55. Collins K (2006) The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7(7):484–494PubMedGoogle Scholar
  56. Collins K (2008) Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev 129(1–2):91–98PubMedGoogle Scholar
  57. Collins K, Greider CW (1993) Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation. Genes Dev 7(7B):1364–1376PubMedGoogle Scholar
  58. Compton SA, Choi JH et al (2007) Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells. Cancer Res 67(4):1513–1519PubMedGoogle Scholar
  59. Counter CM, Hahn WC et al (1998) Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci USA 95(25):14723–14728PubMedGoogle Scholar
  60. Court R, Chapman L et al (2005) How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: A view from high-resolution crystal structures. EMBO Rep 6(1):39–45PubMedGoogle Scholar
  61. d’Adda di Fagagna F (2008) Living on a break: Cellular senescence as a DNA-damage response. Nat Rev Cancer 8(7):512–522PubMedGoogle Scholar
  62. d’Adda di Fagagna F, Hande MP et al (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11(15):1192–1196PubMedGoogle Scholar
  63. d’Adda di Fagagna F, Reaper PM et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198PubMedGoogle Scholar
  64. D’Amours D, Jackson SP (2002) The Mre11 complex: At the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 3(5):317–327PubMedGoogle Scholar
  65. Dancis BM, Holmquist GP (1979) Telomere replication and fusion in eukaryotes. J Theor Biol 78(2):211–224PubMedGoogle Scholar
  66. Dandjinou AT, Levesque N et al (2004) A phylogenetically based secondary structure for the yeast telomerase RNA. Curr Biol 14(13):1148–1158PubMedGoogle Scholar
  67. de Lange T (2005) Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110PubMedGoogle Scholar
  68. de Lange T, Shiue L et al (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10(2):518–527PubMedGoogle Scholar
  69. Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448(7157):1068–1071PubMedGoogle Scholar
  70. Di Leonardo A, Linke SP et al (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8(21):2540–2551PubMedGoogle Scholar
  71. Diede SJ, Gottschling DE (1999) Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99(7):723–733PubMedGoogle Scholar
  72. Dimri GP, Lee X et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92(20):9363–9367PubMedGoogle Scholar
  73. Dimri GP, Martinez JL et al (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62(16):4736–4745PubMedGoogle Scholar
  74. Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286(5437):117–120PubMedGoogle Scholar
  75. Fan X, Price CM (1997) Coordinate regulation of G- and C strand length during new telomere synthesis. Mol Biol Cell 8(11):2145–2155PubMedGoogle Scholar
  76. Feng J, Funk WD et al (1995) The RNA component of human telomerase. Science 269(5228):1236–1241PubMedGoogle Scholar
  77. Ferbeyre G, de Stanchina E et al (2002) Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22(10):3497–3508PubMedGoogle Scholar
  78. Fisher TS, Taggart AK et al (2004) Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol 11(12):1198–1205PubMedGoogle Scholar
  79. Fletcher TM, Sun D et al (1998) Effect of DNA secondary structure on human telomerase activity. Biochemistry 37(16):5536–5541PubMedGoogle Scholar
  80. Forstemann K, Lingner J (2005) Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep 6(4):361–366PubMedGoogle Scholar
  81. Friedman KL, Cech TR (1999) Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev 13(21):2863–2874PubMedGoogle Scholar
  82. Fu D, Collins K (2007) Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell 28(5):773–785PubMedGoogle Scholar
  83. Garcia-Cao M, Gonzalo S et al (2002) A role for the Rb family of proteins in controlling telomere length. Nat Genet 32(3):415–419PubMedGoogle Scholar
  84. Gatei M, Young D et al (2000) ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25(1):115–119PubMedGoogle Scholar
  85. Gavory G, Symmons MF et al (2006) Structural analysis of the catalytic core of human telomerase RNA by FRET and molecular modeling. Biochemistry 45(44):13304–13311PubMedGoogle Scholar
  86. Gillis AJ, Schuller AP et al (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455(7213):633–637PubMedGoogle Scholar
  87. Giraldo R, Rhodes D (1994) The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J 13(10):2411–2420PubMedGoogle Scholar
  88. Gonzalo S, Blasco MA (2005) Role of Rb family in the epigenetic definition of chromatin. Cell Cycle 4(6):752–755PubMedGoogle Scholar
  89. Gonzalo S, Garcia-Cao M et al (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7(4):420–428PubMedGoogle Scholar
  90. Gonzalo S, Jaco I et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8(4):416–424PubMedGoogle Scholar
  91. Gravel S, Larrivée M, Labrecque P, Wellinger R (1998) Yeast Ku as a regulator of chromosomal DNA end structure. Science 280(5364):741–744Google Scholar
  92. Greider CW (1991) Telomerase is processive. Mol Cell Biol 11(9):4572–4580PubMedGoogle Scholar
  93. Greider CW (1998) Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci USA 95(1):90–92PubMedGoogle Scholar
  94. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1):405–413PubMedGoogle Scholar
  95. Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51(6):887–898PubMedGoogle Scholar
  96. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337(6205):331–337PubMedGoogle Scholar
  97. Griffith JD, Comeau L et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503–514PubMedGoogle Scholar
  98. Gu BW, Bessler M et al (2008) A pathogenic dyskerin mutation impairs proliferation and activates a DNA damage response independent of telomere length in mice. Proc Natl Acad Sci USA 105(29):10173–10178PubMedGoogle Scholar
  99. Guo X, Deng Y et al (2007) Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J 26(22):4709–4719PubMedGoogle Scholar
  100. Hanaoka S, Nagadoi A et al (2001) NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains. J Mol Biol 312(1):167–175PubMedGoogle Scholar
  101. Harley CB, Futcher AB et al (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460PubMedGoogle Scholar
  102. Harley CB, Vaziri H et al (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27(4):375–382PubMedGoogle Scholar
  103. Harrington L (2004) Does the reservoir for self-renewal stem from the ends? Oncogene 23(43):7283–7289PubMedGoogle Scholar
  104. Harrington LA, Greider CW (1991) Telomerase primer specificity and chromosome healing. Nature 353(6343):451–454PubMedGoogle Scholar
  105. Harrington L, Hull C et al (1995) Gel shift and UV cross-linking analysis of Tetrahymena telomerase. J Biol Chem 270(15):8893–8901PubMedGoogle Scholar
  106. Harrington L, Zhou W et al (1997) Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 11(23):3109–3115PubMedGoogle Scholar
  107. Hastie ND, Dempster M et al (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346(6287):866–868PubMedGoogle Scholar
  108. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621Google Scholar
  109. Heiss NS, Knight SW et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19(1):32–38PubMedGoogle Scholar
  110. Hemann MT, Greider CW (2000) Wild-derived inbred mouse strains have short telomeres. Nucleic Acids Res 28(22):4474–4478PubMedGoogle Scholar
  111. Hemann MT, Strong MA et al (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107(1):67–77PubMedGoogle Scholar
  112. Henderson E, Hardin CC et al (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51(6):899–908PubMedGoogle Scholar
  113. Henson JD, Neumann AA et al (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21(4):598–610PubMedGoogle Scholar
  114. Herbig U, Jobling WA et al (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513PubMedGoogle Scholar
  115. Hockemeyer D, Daniels JP et al (2006) Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 126(1):63–77PubMedGoogle Scholar
  116. Horard B, Gilson E (2008) Telomeric RNA enters the game. Nat Cell Biol 10(2):113–115PubMedGoogle Scholar
  117. Houghtaling BR, Cuttonaro L et al (2004) A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 14(18):1621–1631PubMedGoogle Scholar
  118. Houseley J, Kotovic K et al (2007) Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO J 26(24):4996–5006PubMedGoogle Scholar
  119. Hsu HL, Gilley D et al (1999) Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 96(22):12454–12458PubMedGoogle Scholar
  120. Hsu HL, Gilley D et al (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14(22):2807–2812PubMedGoogle Scholar
  121. Hug N, Lingner J (2006) Telomere length homeostasis. Chromosoma 115(6):413–425PubMedGoogle Scholar
  122. Isaac CE, Francis SM et al (2006) The retinoblastoma protein regulates pericentric heterochromatin. Mol Cell Biol 26(9):3659–3671PubMedGoogle Scholar
  123. Jackson SP, Jeggo PA (1995) DNA double-strand break repair and V(D)J recombination: Involvement of DNA-PK. Trends Biochem Sci 20(10):412–415PubMedGoogle Scholar
  124. Jacob NK, Kirk KE et al (2003) Generation of telomeric G strand overhangs involves both G and C strand cleavage. Mol Cell 11(4):1021–1032PubMedGoogle Scholar
  125. Jacobs SA, Podell ER et al (2006) Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13(3):218–225PubMedGoogle Scholar
  126. Jeggo PA (1998) Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res 150(5 Suppl):S80–S91PubMedGoogle Scholar
  127. Jiang WQ, Zhong ZH et al (2007) Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference. Oncogene 26(32):4635–4647PubMedGoogle Scholar
  128. Jiang H, Schiffer E et al (2008) Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci USA 105(32):11299–11304PubMedGoogle Scholar
  129. Kannan K, Nelson AD et al (2008) Dyskerin is a component of the arabidopsis telomerase RNP required for telomere maintenance. Mol Cell Biol 28(7):2332–2341PubMedGoogle Scholar
  130. Kanoh J, Sadaie M et al (2005) Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol 15(20):1808–1819PubMedGoogle Scholar
  131. Karlseder J (2003) Telomere repeat binding factors: Keeping the ends in check. Cancer Lett 194(2):189–197PubMedGoogle Scholar
  132. Karlseder J, Broccoli D et al (1999) p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283(5406):1321–1325PubMedGoogle Scholar
  133. Kelleher C, Teixeira MT et al (2002) Telomerase: Biochemical considerations for enzyme and substrate. Trends Biochem Sci 27(11):572–579PubMedGoogle Scholar
  134. Kelleher C, Kurth I et al (2005) Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol Cell Biol 25(2):808–818PubMedGoogle Scholar
  135. Kim SH, Kaminker P et al (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23(4):405–412PubMedGoogle Scholar
  136. Kim SH, Beausejour C et al (2004) TIN2 mediates functions of TRF2 at human telomeres. J Biol Chem 279(42):43799–43804PubMedGoogle Scholar
  137. Kironmai KM, Muniyappa K (1997) Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2(7):443–455PubMedGoogle Scholar
  138. Kishi S, Zhou XZ et al (2001) Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks. J Biol Chem 276(31):29282–29291PubMedGoogle Scholar
  139. Kloting N, Bluher M (2005) Extended longevity and insulin signaling in adipose tissue. Exp Gerontol 40(11):878–883PubMedGoogle Scholar
  140. Konig P, Fairall L et al (1998) Sequence-specific DNA recognition by the myb-like domain of the human telomere binding protein TRF1: A model for the protein-DNA complex. Nucleic Acids Res 26(7):1731–1740PubMedGoogle Scholar
  141. Kulju KS, Lehman JM (1995) Increased p53 protein associated with aging in human diploid fibroblasts. Exp Cell Res 217(2):336–345PubMedGoogle Scholar
  142. Kyrion G, Liu K et al (1993) RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev 7(7A):1146–1159PubMedGoogle Scholar
  143. Lai CK, Mitchell JR et al (2001) RNA binding domain of telomerase reverse transcriptase. Mol Cell Biol 21(4):990–1000PubMedGoogle Scholar
  144. Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272(5264):1010–1013PubMedGoogle Scholar
  145. Larrivee M, LeBel C et al (2004) The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18(12):1391–1396PubMedGoogle Scholar
  146. Lee GE, Yu EY et al (2004) DNA-protein kinase catalytic subunit-interacting protein KIP binds telomerase by interacting with human telomerase reverse transcriptase. J Biol Chem 279(33):34750–34755PubMedGoogle Scholar
  147. Lee JH, Hamilton M et al (2008) Striking similarities in diverse telomerase proteins revealed by combining structure prediction and machine learning approaches. Pac Symp Biocomput: 501–512Google Scholar
  148. Lei M, Podell ER et al (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 11(12):1223–1229PubMedGoogle Scholar
  149. Lendvay TS, Morris DK et al (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144(4):1399–1412PubMedGoogle Scholar
  150. Levis R, Hazelrigg T et al (1985) Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229(4713):558–561PubMedGoogle Scholar
  151. Li B, Comai L (2001) Requirements for the nucleolytic processing of DNA ends by the Werner syndrome protein-Ku70/80 complex. J Biol Chem 276(13):9896–9902PubMedGoogle Scholar
  152. Li B, Comai L (2002) Displacement of DNA-PKcs from DNA ends by the Werner syndrome protein. Nucleic Acids Res 30(17):3653–3661PubMedGoogle Scholar
  153. Li B, Oestreich S et al (2000) Identification of human Rap1: Implications for telomere evolution. Cell 101(5):471–483PubMedGoogle Scholar
  154. Li G, Nelsen C et al (2002) Ku86 is essential in human somatic cells. Proc Natl Acad Sci USA 99(2):832–837PubMedGoogle Scholar
  155. Lim DS, Kim ST et al (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404(6778):613–617PubMedGoogle Scholar
  156. Limbo O, Chahwan C et al (2007) Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol Cell 28(1):134–146PubMedGoogle Scholar
  157. Lin AW, Barradas M et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12(19):3008–3019PubMedGoogle Scholar
  158. Lingner J, Cech TR (1996) Purification of telomerase from Euplotes aediculatus: Requirement of a primer 3′ overhang. Proc Natl Acad Sci USA 93(20):10712–10717PubMedGoogle Scholar
  159. Lingner J, Hughes TR et al (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276(5312):561–567PubMedGoogle Scholar
  160. Liu D, O’Connor MS et al (2004a) Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 279(49):51338–51342PubMedGoogle Scholar
  161. Liu D, Safari A et al (2004b) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6(7):673–680PubMedGoogle Scholar
  162. Liu L, Bailey SM et al (2007) Telomere lengthening early in development. Nat Cell Biol 9(12):1436–1441PubMedGoogle Scholar
  163. Louis EJ (2002) Are Drosophila telomeres an exception or the rule? Genome Biol 3(10):REVIEWS0007PubMedGoogle Scholar
  164. Lue NF (2004) Adding to the ends: What makes telomerase processive and how important is it? Bioessays 26(9):955–962PubMedGoogle Scholar
  165. Luke B, Panza A et al (2008) The Rat1p 5′ to 3′ Exonuclease Degrades Telomeric Repeat-Containing RNA and Promotes Telomere Elongation in Saccharomyces cerevisiae. Mol Cell 32(4):465–477PubMedGoogle Scholar
  166. Lundblad V (2000) Molecular biology. Telomeres keep on rappin. Science 288(5474):2141–2142PubMedGoogle Scholar
  167. Lundblad V (2003) Telomere replication: An Est fest. Curr Biol 13(11):R439–R441PubMedGoogle Scholar
  168. Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57(4):633–643PubMedGoogle Scholar
  169. Ma Y, Lu H et al (2004) A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell 16(5):701–713PubMedGoogle Scholar
  170. Machado-Pinilla R, Sanchez-Perez I et al (2008) A dyskerin motif reactivates telomerase activity in X-linked dyskeratosis congenita and in telomerase-deficient human cells. Blood 111(5):2606–2614PubMedGoogle Scholar
  171. Mages GJ, Feldmann HM et al (1996) Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J Biol Chem 271(14):7910–7915PubMedGoogle Scholar
  172. Makarov VL, Lejnine S et al (1993) Nucleosomal organization of telomere-specific chromatin in rat. Cell 73(4):775–787PubMedGoogle Scholar
  173. Marie-Egyptienne DT, Cerone MA et al (2005) A human-Tetrahymena pseudoknot chimeric telomerase RNA reconstitutes a nonprocessive enzyme in vitro that is defective in telomere elongation. Nucleic Acids Res 33(17):5446–5457PubMedGoogle Scholar
  174. Marrone A, Walne A et al (2005) Dyskeratosis congenita: Telomerase, telomeres and anticipation. Curr Opin Genet Dev 15(3):249–257PubMedGoogle Scholar
  175. Martin SG, Laroche T et al (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97(5):621–633PubMedGoogle Scholar
  176. Martin-Rivera L, Blasco MA (2001) Identification of functional domains and dominant negative mutations in vertebrate telomerase RNA using an in vivo reconstitution system. J Biol Chem 276(8):5856–5865PubMedGoogle Scholar
  177. Masse I, Molin L et al (2008) A novel role for the SMG-1 kinase in lifespan and oxidative stress resistance in Caenorhabditis elegans. PLoS ONE 3(10):e3354PubMedGoogle Scholar
  178. McClintock B (1931) The order of the genes C, Sh and Wx in Zea Mays with reference to a cytologically known point in the chromosome. Proc Natl Acad Sci USA 17(8):485–491PubMedGoogle Scholar
  179. McClintock B (1941) The stability of broken ends of chromosomes in Zea Mays. Genetics 26(2):234–282PubMedGoogle Scholar
  180. Melek M, Greene EC et al (1996) Processing of nontelomeric 3′ ends by telomerase: Default template alignment and endonucleolytic cleavage. Mol Cell Biol 16(7):3437–3445PubMedGoogle Scholar
  181. Min KJ, Yamamoto R et al (2008) Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7(2):199–206PubMedGoogle Scholar
  182. Mitchell JR, Collins K (2000) Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol Cell 6(2):361–371PubMedGoogle Scholar
  183. Mitchell JR, Cheng J et al (1999a) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 19(1):567–576PubMedGoogle Scholar
  184. Mitchell JR, Wood E et al (1999b) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402(6761):551–555PubMedGoogle Scholar
  185. Mochizuki Y, He J et al (2004) Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proc Natl Acad Sci USA 101(29):10756–10761PubMedGoogle Scholar
  186. Moretti P, Shore D (2001) Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol Cell Biol 21(23):8082–8094PubMedGoogle Scholar
  187. Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59(3):521–529PubMedGoogle Scholar
  188. Morin GB (1991) Recognition of a chromosome truncation site associated with alpha-thalassaemia by human telomerase. Nature 353(6343):454–456PubMedGoogle Scholar
  189. Moyzis RK, Buckingham JM et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85(18):6622–6626PubMedGoogle Scholar
  190. Muller HJ (1938) The remaking of chromosome. Collecting Net 13:181–198Google Scholar
  191. Murr R, Vaissiere T et al (2007) Orchestration of chromatin-based processes: Mind the TRRAP. Oncogene 26(37):5358–5372PubMedGoogle Scholar
  192. Nakamura TM, Morin GB et al (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277(5328):955–959PubMedGoogle Scholar
  193. Nalapareddy K, Jiang H et al (2008) Determining the influence of telomere dysfunction and DNA damage on stem and progenitor cell aging – what markers can we use? Exp Gerontol 43(11):998–1004PubMedGoogle Scholar
  194. Nghiem P, Park PK et al (2002) ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J Biol Chem 277(6):4428–4434PubMedGoogle Scholar
  195. Nizet V, Ohtake T et al (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414(6862):454–457PubMedGoogle Scholar
  196. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41(1):181–190PubMedGoogle Scholar
  197. Oulton R, Harrington L (2004) A human telomerase-associated nuclease. Mol Biol Cell 15(7):3244–3256PubMedGoogle Scholar
  198. Paeschke K, Simonsson T et al (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12(10):847–854PubMedGoogle Scholar
  199. Paeschke K, Juranek S et al (2008) Telomerase recruitment by the telomere end binding protein-beta facilitates G-quadruplex DNA unfolding in ciliates. Nat Struct Mol Biol 15(6):598–604PubMedGoogle Scholar
  200. Pardue ML, DeBaryshe PG (1999) Drosophila telomeres: Two transposable elements with important roles in chromosomes. Genetica 107(1–3):189–196PubMedGoogle Scholar
  201. Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37:485–511PubMedGoogle Scholar
  202. Paull TT, Gellert M (1998) The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1(7):969–979PubMedGoogle Scholar
  203. Paull TT, Gellert M (1999) Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13(10):1276–1288PubMedGoogle Scholar
  204. Pennock E, Buckley K et al (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104(3):387–396PubMedGoogle Scholar
  205. Porter SE, Greenwell PW et al (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res 24(4):582–585PubMedGoogle Scholar
  206. Prescott J, Blackburn EH (1997) Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev 11(21):2790–2800PubMedGoogle Scholar
  207. Price CM, Cech TR (1989) Properties of the telomeric DNA-binding protein from Oxytricha nova. Biochemistry 28(2):769–774PubMedGoogle Scholar
  208. Prieur A, Peeper DS (2008) Cellular senescence in vivo: A barrier to tumorigenesis. Curr Opin Cell Biol 20(2):150–155PubMedGoogle Scholar
  209. Ramsden DA, Gellert M (1998) Ku protein stimulates DNA end joining by mammalian DNA ligases: A direct role for Ku in repair of DNA double-strand breaks. EMBO J 17(2):609–614PubMedGoogle Scholar
  210. Redon S, Reichenbach P et al (2007) Protein RNA and protein protein interactions mediate association of human EST1A/SMG6 with telomerase. Nucleic Acids Res 35(20):7011–7022PubMedGoogle Scholar
  211. Reichenbach P, Hoss M et al (2003) A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr Biol 13(7):568–574PubMedGoogle Scholar
  212. Reveal PM, Henkels KM et al (1997) Synthesis of the mammalian telomere lagging strand in vitro. J Biol Chem 272(18):11678–11681PubMedGoogle Scholar
  213. Riha K, Heacock ML et al (2006) The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology. Annu Rev Genet 40:237–277PubMedGoogle Scholar
  214. Ritchie KB, Petes TD (2000) The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155(1):475–479PubMedGoogle Scholar
  215. Rouda S, Skordalakes E (2007) Structure of the RNA-binding domain of telomerase: Implications for RNA recognition and binding. Structure 15(11):1403–1412PubMedGoogle Scholar
  216. Rubin CI, Atweh GF (2004) The role of stathmin in the regulation of the cell cycle. J Cell Biochem 93(2):242–250PubMedGoogle Scholar
  217. Runge KW, Zakian VA (1996) TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 16(6):3094–3105PubMedGoogle Scholar
  218. Salvati E, Leonetti C et al (2007) Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 117(11):3236–3247PubMedGoogle Scholar
  219. Sarafianos SG, Clark AD Jr et al (2002) Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA. Embo J 21(23):6614–6624PubMedGoogle Scholar
  220. Schnapp G, Rodi HP et al (1998) One-step affinity purification protocol for human telomerase. Nucleic Acids Res 26(13):3311–3313PubMedGoogle Scholar
  221. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10(2):228–236PubMedGoogle Scholar
  222. Sfeir AJ, Chai W et al (2005a) Telomere-end processing the terminal nucleotides of human chromosomes. Mol Cell 18(1):131–138PubMedGoogle Scholar
  223. Sfeir AJ, Shay JW et al (2005b) Fine-tuning the chromosome ends: The last base of human telomeres. Cell Cycle 4(11):1467–1470PubMedGoogle Scholar
  224. Shampay J, Blackburn EH (1988) Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 85(2):534–538PubMedGoogle Scholar
  225. Shen X, Mizuguchi G et al (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406(6795):541–544PubMedGoogle Scholar
  226. Shikata M, Ishikawa F et al (2007) Tel2 is required for activation of the Mrc1-mediated replication checkpoint. J Biol Chem 282(8):5346–5355PubMedGoogle Scholar
  227. Shiloh Y (2003) ATM and related protein kinases: Safeguarding genome integrity. Nat Rev Cancer 3(3):155–168PubMedGoogle Scholar
  228. Shippen-Lentz D, Blackburn EH (1990) Functional evidence for an RNA template in telomerase. Science 247(4942):546–552PubMedGoogle Scholar
  229. Siede W, Friedl AA et al (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142(1):91–102PubMedGoogle Scholar
  230. Singer MS, Gottschling DE (1994) TLC1: Template RNA component of Saccharomyces cerevisiae telomerase. Science 266(5184):404–409PubMedGoogle Scholar
  231. Smith GC, Divecha N et al (1999) DNA-dependent protein kinase and related proteins. Biochem Soc Symp 64:91–104PubMedGoogle Scholar
  232. Smogorzewska A, de Lange T (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J 21(16):4338–4348PubMedGoogle Scholar
  233. Smogorzewska A, de Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208PubMedGoogle Scholar
  234. Smogorzewska A, van Steensel B et al (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20(5):1659–1668PubMedGoogle Scholar
  235. Snow BE, Erdmann N et al (2003) Functional conservation of the telomerase protein Est1p in humans. Curr Biol 13(8):698–704PubMedGoogle Scholar
  236. Stansel RM, de Lange T et al (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20(19):5532–5540PubMedGoogle Scholar
  237. Steinert S, Shay JW et al (2004) Modification of subtelomeric DNA. Mol Cell Biol 24(10):4571–4580PubMedGoogle Scholar
  238. Stellwagen AE, Haimberger ZW et al (2003) Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 17(19):2384–2395PubMedGoogle Scholar
  239. Stewart GS, Maser RS et al (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99(6):577–587PubMedGoogle Scholar
  240. Takai H, Wang RC et al (2007) Tel2 regulates the stability of PI3K-related protein kinases. Cell 131(7):1248–1259PubMedGoogle Scholar
  241. Takata H, Tanaka Y et al (2005) Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol Cell 17(4):573–583PubMedGoogle Scholar
  242. Theimer CA, Feigon J (2006) Structure and function of telomerase RNA. Curr Opin Struct Biol 16(3):307–318PubMedGoogle Scholar
  243. Theimer CA, Finger LD et al (2003) Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc Natl Acad Sci USA 100(2):449–454PubMedGoogle Scholar
  244. Theobald DL, Cervantes RB et al (2003a) Homology among telomeric end-protection proteins. Structure 11(9):1049–1050PubMedGoogle Scholar
  245. Theobald DL, Mitton-Fry RM et al (2003b) Nucleic acid recognition by OB-fold proteins. Annu Rev Biophys Biomol Struct 32:115–133PubMedGoogle Scholar
  246. Ting NS, Yu Y et al (2005) Human Ku70/80 interacts directly with hTR, the RNA component of human telomerase. Nucleic Acids Res 33(7):2090–2098PubMedGoogle Scholar
  247. Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol 9(3):337–342PubMedGoogle Scholar
  248. Tomas-Loba A, Flores I et al (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135(4):609–622PubMedGoogle Scholar
  249. Tommerup H, Dousmanis A et al (1994) Unusual chromatin in human telomeres. Mol Cell Biol 14(9):5777–5785PubMedGoogle Scholar
  250. Tzfati Y, Fulton TB et al (2000) Template boundary in a yeast telomerase specified by RNA structure. Science 288(5467):863–867PubMedGoogle Scholar
  251. Tzfati Y, Knight Z et al (2003) A novel pseudoknot element is essential for the action of a yeast telomerase. Genes Dev 17(14):1779–1788PubMedGoogle Scholar
  252. Ulaner GA, Giudice LC (1997) Developmental regulation of telomerase activity in human fetal tissues during gestation. Mol Hum Reprod 3(9):769–773PubMedGoogle Scholar
  253. van Overbeek M, de Lange T (2006) Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr Biol 16(13):1295–1302PubMedGoogle Scholar
  254. van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385(6618):740–743PubMedGoogle Scholar
  255. van Steensel B, Smogorzewska A et al (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92(3):401–413PubMedGoogle Scholar
  256. Varon R, Vissinga C et al (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93(3):467–476PubMedGoogle Scholar
  257. Vaziri H, Benchimol S (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8(5):279–282PubMedGoogle Scholar
  258. Veldman T, Etheridge KT et al (2004) Loss of hPot1 function leads to telomere instability and a cut-like phenotype. Curr Biol 14(24):2264–2270PubMedGoogle Scholar
  259. Venteicher AS, Meng Z et al (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132(6):945–957PubMedGoogle Scholar
  260. Verdun RE, Karlseder J (2006) The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127(4):709–720PubMedGoogle Scholar
  261. Verdun RE, Crabbe L et al (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20(4):551–561PubMedGoogle Scholar
  262. Volpe TA, Kidner C et al (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297(5588):1833–1837PubMedGoogle Scholar
  263. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344Google Scholar
  264. von Zglinicki T, Saretzki G et al (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126(1):111–117Google Scholar
  265. Walker JR, Corpina RA et al (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607–614PubMedGoogle Scholar
  266. Wang H, Blackburn EH (1997) De novo telomere addition by Tetrahymena telomerase in vitro. EMBO J 16(4):866–879PubMedGoogle Scholar
  267. Wang C, Meier UT (2004) Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 23(8):1857–1867PubMedGoogle Scholar
  268. Wang E, Moutsatsos IK et al (1989) Cloning and molecular characterization of a cDNA clone to statin, a protein specifically expressed in nonproliferating quiescent and senescent fibroblasts. Exp Gerontol 24(5–6):485–499PubMedGoogle Scholar
  269. Wang J, Sattar AK et al (1997) Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell 89(7):1087–1099PubMedGoogle Scholar
  270. Wang RC, Smogorzewska A et al (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119(3):355–368PubMedGoogle Scholar
  271. Wang F, Podell ER et al (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445(7127):506–510PubMedGoogle Scholar
  272. Watkins NJ, Lemm I et al (2004) Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol Cell 16(5):789–798PubMedGoogle Scholar
  273. Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239(94):197–201PubMedGoogle Scholar
  274. Watson JD, Crick FH (1953) The structure of DNA. Cold Spring Harb Symp Quant Biol 18:123–131PubMedGoogle Scholar
  275. Weinrich SL, Pruzan R et al (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17(4):498–502PubMedGoogle Scholar
  276. Wenz C, Enenkel B et al (2001) Human telomerase contains two cooperating telomerase RNA molecules. EMBO J 20(13):3526–3534PubMedGoogle Scholar
  277. Wu Y, Xiao S et al (2007) MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol 14(9):832–840PubMedGoogle Scholar
  278. Xin H, Liu D et al (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445(7127):559–562PubMedGoogle Scholar
  279. Yang Q, Zheng YL et al (2005) POT1 and TRF2 cooperate to maintain telomeric integrity. Mol Cell Biol 25(3):1070–1080PubMedGoogle Scholar
  280. Ye JZ, Hockemeyer D et al (2004) POT1-interacting protein PIP1: A telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18(14):1649–1654PubMedGoogle Scholar
  281. Yeager TR, Neumann AA et al (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59(17):4175–4179PubMedGoogle Scholar
  282. Yu GL, Bradley JD et al (1990) In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344(6262):126–132PubMedGoogle Scholar
  283. Zappulla DC, Cech TR (2004) Yeast telomerase RNA: A flexible scaffold for protein subunits. Proc Natl Acad Sci USA 101(27):10024–10029PubMedGoogle Scholar
  284. Zappulla DC, Goodrich K et al (2005) A miniature yeast telomerase RNA functions in vivo and reconstitutes activity in vitro. Nat Struct Mol Biol 12(12):1072–1077PubMedGoogle Scholar
  285. Zaug AJ, Podell ER et al (2008) Mutation in TERT separates processivity from anchor-site function. Nat Struct Mol Biol 15(8):870–872PubMedGoogle Scholar
  286. Zhong Z, Shiue L et al (1992) A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12(11):4834–4843PubMedGoogle Scholar
  287. Zhu XD, Kuster B et al (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25(3):347–352PubMedGoogle Scholar
  288. Zhu Z, Zheng T et al (2004) Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 304(5677):1678–1682PubMedGoogle Scholar
  289. Zou L, Elledge SJ (2003) Sensing DNa damage through ATRIP recognition of RPA-ssDNA complexes. Science 300(5625):1542–1548PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK

Personalised recommendations