Skip to main content

Recent Developments in the Molecular Biology of Pituitary Tumors

  • Chapter
  • First Online:
Endocrine Pathology:
  • 2211 Accesses

Abstract

Significant advances have been made in the analysis of molecular mechanisms leading to pituitary tumor development in recent years. Studies of familial pituitary tumors, oncogenes and tumor suppressor genes have all contributed to this knowledge. Cytogenetic studies, PCR, RT-PCR and in situ hybridization have also had significant contributions in this field. Recent studies of microRNAs and DNA microarray analyses continue to provide new insights into the pathogenesis of pituitary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S (1990) Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 71:1427–1433

    CAS  PubMed  Google Scholar 

  2. Alexander JM, Biller BM, Bikkal H, Zervas NT, Arnold A, Klibanski A (1990) Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 86:336–340

    CAS  PubMed  Google Scholar 

  3. Lyons J, Landis CA, Harsh G et al (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659

    CAS  PubMed  Google Scholar 

  4. Spada A, Vallar L, Faglia G (1992) G protein oncogenes in pituitary tumors. Trends Endocrinol Metab 3:355–360

    CAS  PubMed  Google Scholar 

  5. Beckers A, Daly A (2007) The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinal 157:371–382

    CAS  Google Scholar 

  6. Day AF, Jaffrain-Rea ML, Beckers A (2005) Clinical and genetic features of familial pituitary adenomas. Horm Metab Res 37:347–354

    Google Scholar 

  7. Verges B, Boureille F, Goudet P et al (2002) Pituitary disease in MEN type 1 (MEN1): data from the Franc-Belgum MEN1 multicenter study. J Clin Endocrinol Metab 87:457–465

    CAS  PubMed  Google Scholar 

  8. Pellgata NS, Quintanilla-Martinez L, Siggelkow H et al (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 103:15558–15563

    Google Scholar 

  9. Carney JA, Hruska LS, Beauchamp GD, Gordon H (1985) Dominant inheritance of the complex of myxomas, spotty pigmentation and endocrine overactivity. Mayo Clin Proc 61:165–172

    Google Scholar 

  10. Boikos SA, Stratakis CA (2006) Pituitary pathology in patients with Carney Complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities. Pituitary 9:203–209

    CAS  PubMed  Google Scholar 

  11. Veugelers M, Wilkers D, Burton K et al (2004) Compartive PRKAR1A genotype-phenotype analyses in humans with Carney complex and prkar 1a haploinsufficient mice. Proc Natl Acad Sci USA 101:14222–14227

    CAS  PubMed  Google Scholar 

  12. Pack SD, Kirschner LS, Pak E, Zhuang Z, Carney JA, STratakis CA (2000) Genetic and histological studies of somatomammotropic tumors in patients with the “Complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). J Clin Endocrinol Metab 85:3860–3865

    CAS  PubMed  Google Scholar 

  13. Verloes A, Stevenaert A, The BT, Petrossians P, Beckers A (1999) Familial acromegaly: case report and review of the literature. Pituitary 1:273–277

    CAS  PubMed  Google Scholar 

  14. Vierimaa O, Georgitsi M, Lehtonen F et al (2006) Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312:1228–1230

    CAS  PubMed  Google Scholar 

  15. Daly AF, Vanbellinghen JF, Khoo SK et al (2007) Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J Clin Endocrinol Metab 92:1901–1896

    Google Scholar 

  16. Yoshimoto K, IwahanaH FA, Sano T, Itakura M (1993) Rare mutations of the Gs alpha subunit gene in human endocrine tumors. Mutation detection by polymerase chain reaction-primer-introduced restriction analysis. Cancer 72:1386–1393

    CAS  PubMed  Google Scholar 

  17. Yang I, Park S, Ryu M et al (1996) Characteristics of gsp-positive growth hormone-secreting pituitary tumors in Korean acromegalic patients. Eur J Endocrinol 134:720–726

    CAS  PubMed  Google Scholar 

  18. Berthrat J, Chanson P, Montmimy M (1995) The cyclic adenosine 3′5′ monophosphate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol Endocrinol 9:777–783

    Google Scholar 

  19. Cai WY, Alexander JM, Hedley-Whyte ET et al (1994) Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 78:89–93

    CAS  PubMed  Google Scholar 

  20. Pei L, Melmed S, Scheithauer B, Kovacs K, Prager D (1994) H-ras mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 78:842–846

    CAS  PubMed  Google Scholar 

  21. Karga HJ, Alexander JM, Hedley-Whyte ET, Klibanski A, Jameson JL (1992) Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 74:914–919

    CAS  PubMed  Google Scholar 

  22. Pei L, Melmed S (1997) Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 11:433–441

    CAS  PubMed  Google Scholar 

  23. Salehi F, Kovacs K, Scheithauer BW, Lloyd RV (2008) Cusimanom. Pituitary tumor-transforming gene in endocrine and other neoplasms. A review and update. Endocr Relat Cancer 15:721–742

    CAS  PubMed  Google Scholar 

  24. Hunter T, Pines J (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 18(79):573–582

    Google Scholar 

  25. Sherr CJ (1993) Mammalian GI cyclins. Cell 73:1059–1065

    CAS  PubMed  Google Scholar 

  26. Hibberts NA, Simpson DJ, Bicknell JE et al (1999) Analysis of cyclin Dl (CCNDl) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res 5:2133–2139

    CAS  PubMed  Google Scholar 

  27. Jordan S, Lidher K, Korbonits M, Lowe DG, Grossman AB (2000) Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 143:RI–R6

    Google Scholar 

  28. Qian X, Kulig E, Jin L, Lloyd RV (1998) Expression of D-type cyclins in normal and neoplastic rat pituitary. Endocrinology 139:2058–2067

    CAS  PubMed  Google Scholar 

  29. Lloyd RV (2001) Molecular pathology of pituitary adenomas. J Neuro Oncol 54:111–119

    CAS  Google Scholar 

  30. Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WF, Prager D (1995) Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 15(55):1613–1616

    Google Scholar 

  31. Simpson DJ, Magnay J, Bicknell JE et al (1999) Chromosome 13q deletion mapping in pituitary tumors: infrequent loss of the retinoblastoma susceptibility gene (RB I) locus despite loss of RB 1 protein product in somatotrophinomas. Cancer Res 59:1562–1566

    CAS  PubMed  Google Scholar 

  32. Levy A, Hall L, Yeudall WA, Lightman SL (1994) p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol (Oxf) 41:809–814

    CAS  Google Scholar 

  33. Herman V, Drazin NZ, Gonsky R, Melmed S (1993) Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 77:50–55

    CAS  PubMed  Google Scholar 

  34. Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER Jr (1996) p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery 38:763–770

    Google Scholar 

  35. Pernicone PJ, Scheithauer BW, Sebo TJ et al (1997) Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 79:804–812

    CAS  PubMed  Google Scholar 

  36. Takino H, Herman V, Weiss M, Melmed S (1995) Purine-binding factor (nm23) gene expression in pituitary tumors: marker of adenoma invasiveness. J Clin Endocrino1 Metab 80:1733–1738

    CAS  Google Scholar 

  37. Pagotto D, Arzberger T, Theodoropoulou M et al (2000) The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res 60:6794–6799

    CAS  PubMed  Google Scholar 

  38. Zhang X, Sun H, Danila DC et al (2002) Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 87:1262–1267

    CAS  PubMed  Google Scholar 

  39. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    CAS  PubMed  Google Scholar 

  40. Reed JA, Loganzo F Jr, Shea CR et al (1995) Loss of expression of the p16/ cyclin-dependent kinase inhibitor 2 tumor suppressor gene in melanocytic lesions correlates with invasive stage of tumor progression. Cancer Res 55:2713–2718

    CAS  PubMed  Google Scholar 

  41. Woloschak M, Yu A, Xiao J, Post KD (1996) Frequent loss of the P161NK4a gene product in human pituitary tumors. Cancer Res 56:2493–2496

    CAS  PubMed  Google Scholar 

  42. Woloschak M, Yu A, Post KD (1997) Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol Carcinog 19:221–224

    CAS  PubMed  Google Scholar 

  43. Asa SL, Ezzat S (1998) The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19:798–827

    CAS  PubMed  Google Scholar 

  44. Farrell WE, Clayton RN (2000) Molecular pathogenesis of pituitary tumors. Front Neuroendocrinol 21:174–198

    CAS  PubMed  Google Scholar 

  45. Heaney AP, Melmed S (2000) New pituitary oncogenes. Endocr Relat Cancer 7:3–15

    CAS  PubMed  Google Scholar 

  46. Simpson DJ, Bicknell JE, McNicol AM, Clayton RN, Farrell WE (1999) Hypermethylation of the p 16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chromosomes Cancer 24:328–336

    CAS  PubMed  Google Scholar 

  47. Frost SJ, Simpson DJ, Clayton RN, Farrell WE (1999) Transfection of an inducible pI6/CDKN2A construct mediates reversible growth inhibition and G1 arrest in the AtT20 pituitary tumor cell line. Mol Endocrinol 13:1801–1810

    CAS  PubMed  Google Scholar 

  48. Lloyd RV, Erickson LA, Jin L et al (1999) p27kipl: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154:313–323

    CAS  PubMed  Google Scholar 

  49. Fero ML, Rivkin M, Tasch M et al (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kipl)-deficient mice. Cell 85:733–744

    CAS  PubMed  Google Scholar 

  50. Kiyokawa H, Kineman RD, Manova-Todorova KO et al (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kipl). Cell 85:721–732

    CAS  PubMed  Google Scholar 

  51. Nakayama K, Ishida N, Shirane M et al (1996) Mice lacking p27(Kipl) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720

    CAS  PubMed  Google Scholar 

  52. Lloyd RV, Jin L, Qian X, Kulig E (1997) Aberrant p27kipl expression in endocrine and other tumors. Am J Pathol 150:401–407

    CAS  PubMed  Google Scholar 

  53. Erickson LA (2000) p27(kipl) and other cell-cycle protein expression in normal and neoplastic endocrine tissues. Endocr Pathol 11:109–122

    CAS  PubMed  Google Scholar 

  54. Qian X, Jin L, Kulig E, Lloyd RV (1998) DNA methylation regulates p27kipl expression in rodent pituitary cell lines. Am J Pathol 153:1475–1482

    CAS  PubMed  Google Scholar 

  55. Qian X, Jin L, Grande JP, Lloyd RV (1996) Transforming growth factor-beta and p27 expression in pituitary cells. Endocrinology 137:3051–3060

    CAS  PubMed  Google Scholar 

  56. Calle-Rodrigue RD, Giannini C, Scheithauer BW, Lloyd RV, Wollan PC, Kovacs KT, Stefaneanu L, Ebright AB, Abboud CF, Davis DH (1998) Prolactinomas in male and female patients: a comparative clinicopathologic study. Mayo Clin Proc 73:1046–1052

    CAS  PubMed  Google Scholar 

  57. Jin L, Qian X, Kulig E, Sanno N et al (1997) Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kipi expression in nontumorous and neoplastic human pituitaries. Am J Pathol 151:509–519

    CAS  PubMed  Google Scholar 

  58. Qian X, Jin L, Lloyd RV (2000) Aberrant DNA methylation of cyclin D2 and p27 genes in rodent pituitary tumor cell lines correlates with specific gene expression. Endocr Pathol 11:85–96

    CAS  PubMed  Google Scholar 

  59. Jin L, Kulig E, Qian X, Scheithauer BW, Eberhardt NL, Lloyd RV (1998) A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T-antigen. Endocr Pathol 9:169–184

    CAS  Google Scholar 

  60. Lidhar K, Korbonits M, Jordan S et al (1999) Low expression of the cell cycle inhibitor p27Kipi in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J Clin Endocrinol Metab 84:3823–3830

    CAS  PubMed  Google Scholar 

  61. Pagano M, Tam SW, Theodoras AM et al (1995) Science 269:682–685

    CAS  PubMed  Google Scholar 

  62. Morisaki H, Fujimoto A, Ando A, Nagata Y, Ikeda K, Nakanishi M, Morisaki H, Fujimoto A, Ando A, Nagata Y, Ikeda K, Nakanishi M (1997) Cell cycle-dependent phosphorylation of p27 cyclin-dependent kinase (Cdk) inhibitor by cyclin E/Cdk2. Biochem Biophys Res Commun 240:386–390

    CAS  PubMed  Google Scholar 

  63. Vlach J, Hennecke S, Amati B (1997) Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 16:5334–5344

    CAS  PubMed  Google Scholar 

  64. Patton EE, Willems AR, Tyers M (1998) Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet 14:236–243

    CAS  PubMed  Google Scholar 

  65. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    CAS  PubMed  Google Scholar 

  66. Tomoda K, Kubota Y, Kato J (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip I is instigated by Jabl. Nature 398:160–165

    CAS  PubMed  Google Scholar 

  67. Franklin DS, Godfrey VL, Lee H et al (1998) CDK inhibitors pI8 (INK4c) and p27 (Kipl) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12:2899–2911

    CAS  PubMed  Google Scholar 

  68. Franklin DS, Godfrey VL, O'Brien DA, Deng C, Xiong Y (2000) Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 20:6147–6158

    CAS  PubMed  Google Scholar 

  69. Zhang X, Zhou Y, Mehta KR et al (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88:5119–5126

    CAS  PubMed  Google Scholar 

  70. Kejman R, Batista DL, Zhong Y et al (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93:4119–4125

    Google Scholar 

  71. Farrell WE, Simpson DJ, Bicknell JE, Talbot AJ, Bates AS, Clayton RN (1997) Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas: the deleted region involves markers outside of the MTSI and MTS2 genes. Cancer Res 57:2703–2709

    CAS  PubMed  Google Scholar 

  72. Daniely M, Aviram A, Adams EF et al (1998) Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clin Endocrinol Metab 83:1801–1805

    CAS  PubMed  Google Scholar 

  73. Metzger AK, Mohapatra G, Minn YA et al (1999) Multiple genetic aberrations including evidence of chromosome llq13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 90:306–314

    CAS  PubMed  Google Scholar 

  74. Hui AB, Pang JC, Ko CW, Ng HK (1999) Detection of chromosomal imbalances in growth hormone-secreting pituitary tumors by comparative genomic hybridization. Hum Pathol 30:1019–1023

    CAS  PubMed  Google Scholar 

  75. Harada K, Nishizaki T, Ozaki S et al (1999) Cytogenetic alterations in pituitary adenomas detected by comparative genomic hybridization. Cancer Genet Cytogenet 112:38–41

    CAS  PubMed  Google Scholar 

  76. Trautmann K, Thakker RV, Ellison DW et al (2001) Chromosomal aberrations in sporadic pituitary tumors. Int J Cancer 91:809–814

    CAS  PubMed  Google Scholar 

  77. Fan X, Paetau A, Aalto Y et al (2001) Gain of chromosome 3 and loss of 13q are frequent alterations in pituitary adenomas. Cancer Genet Cytogenet 128:97–103

    CAS  PubMed  Google Scholar 

  78. Szymas J, Schluens K, Liebert W, Petersen I (2002) Genomic instability in pituitary adenomas. Pituitary 5:211–219

    CAS  PubMed  Google Scholar 

  79. Pack SD, Qin LX, Pak E et al (2005) Common genetic changes in hereditary and sporadic pituitary adenomas detected by comparative genomic hybridization. Genes Chromosomes Cancer 43:72–82

    CAS  PubMed  Google Scholar 

  80. Richert CH, Scheithauer BW, Paulus W (2001) Chromosomal aberrations in pituitary carcinoma metastases. Acta Neuropathol 102:117–120

    Google Scholar 

  81. Kontogeorgos G, Kapranos N (1996) Interphase analysis of chromosome 11 in human pituitary somatotroph adenomas by direct fluorescence in situ hybridization. Endocr Pathol 7:203–206

    PubMed  Google Scholar 

  82. Fedele M, Battista S, Kenyon L et al (2002) Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 21:3190–3198

    CAS  PubMed  Google Scholar 

  83. Fusco A, Fedele M (2007) Roles of HMGA proteins in cancer. Nat Rev Cancer 7:899–910

    CAS  PubMed  Google Scholar 

  84. Asa SL (2001) Transgenic and knockout mouse models clarify pituitary development, function and disease. Brain Pathol 11:371–384

    CAS  PubMed  Google Scholar 

  85. Ezzat S, Zheng L, Zhu XF, Wu GE, Asa SL (2002) Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest 109:69–78

    CAS  PubMed  Google Scholar 

  86. Heaney AP, Fernando M, Melmed S (2002) Functional role of estrogen in pituitary tumor pathogenesis. J Clin Invest 109:277–283

    CAS  PubMed  Google Scholar 

  87. Cushman LJ, Watkins-Chow DE, Brinkmeier ML et al (2001) Persistent Propl expression delays gonadotrope differentiation and enhances pituitary tumor susceptibility. Hum Mol Genet 10:1141–1153

    CAS  PubMed  Google Scholar 

  88. Scheithauer BW, Gaffey TA, Lloyd RV et al (2006) Pathobiology of pituitary adenomas and carcinomas. Neurosurgery 59:341–353

    PubMed  Google Scholar 

  89. Lloyd RV, Iacangelo A, Eiden LE, Cano M, Jin L, Grimes M (1989) Chromogranin A and B messenger ribonucleic acids in pituitary and other normal and neoplastic human endocrine tissues. Lab Invest 60:548–556

    CAS  PubMed  Google Scholar 

  90. Singer RH, Lawrence JB, Villnave C (1986) Optimization of in situ hybridization using isotopic and non-isotopic detection methods. Biotechniques 4:230–259

    CAS  Google Scholar 

  91. Gee CE, Roberts JL (1983) In situ hybridization histochemistry: a technique for the study of gene expression in single cells. DNA 2:157–163

    CAS  PubMed  Google Scholar 

  92. Hankin RC, Lloyd RV (1989) Detection of messenger RNA in routinely processed tissue sections with biotinylated oligonucleotide probes. Am J Clin Pathol 92:166–171

    CAS  PubMed  Google Scholar 

  93. Lloyd RV (1988) Analysis of human pituitary tumors by in situ hybridization. Pathol Res Pract 183:558–560

    CAS  PubMed  Google Scholar 

  94. Levy A, Lightman SL (1988) Quantitative in-situ hybridization histochemistry studies on growth hormone (GH) gene expression in acromegalic somatotrophs: effects of somatostatin, GH-releasing factor and cortisol. J Mol Endocrinol 1:19–26

    CAS  PubMed  Google Scholar 

  95. Levy A, Lightman SL (1990) Relationship between somatostatin and growth hormone messenger ribonucleic acid in human pituitary adenomas: an in-situ hybridization histochemistry study. Clin Endocrinol 32:661–668

    CAS  Google Scholar 

  96. Kovacs K, Lloyd R, Horvath E et al (1989) Silent somatotroph adenomas of the human pituitary. A morphologic study of three cases including immunocytochemistry, electron microscopy, in vitro examination, and in situ hybridization. Am J Pathol 134:345–353

    CAS  PubMed  Google Scholar 

  97. Trouillas J, Sassolas G, Loras B et al (1991) Somatotropic adenomas without acromegaly. Pathol Res Pract 187:943–949

    CAS  PubMed  Google Scholar 

  98. Saeger W, Uhlig H, Baz E, Fehr S, Ludecke DK (1991) In situ hybridization for different mRNA in GH-secreting and in inactive pituitary adenomas. Pathol Res Pract 187:559–563

    CAS  PubMed  Google Scholar 

  99. Stefaneanu L, Kovacs K, Lloyd RV et al (1992) Pituitary lactotrophs and somatotrophs in pregnancy: a correlative in situ hybridization and immunocytochemical study. Virchows Arch B Cell Pathol Mol Pathol 62:291–296

    CAS  Google Scholar 

  100. Kovacs K, Stefaneanu L, Horvath E (1991) Effect of dopamine agonist medication on prolactin producing pituitary adenomas. A morphological study including immunocytochemistry, electron microscopy and in situ hybridization. Virchows Arch A Pathol Anat Histopathol 418:439–446

    CAS  PubMed  Google Scholar 

  101. Lloyd RV, Fields K, Jin L, Horvath E, Kovacs K (1990) Analysis of endocrine active and clinically silent corticotropic adenomas by in situ hybridization. Am J Pathol 137:479–488

    CAS  PubMed  Google Scholar 

  102. Stefaneanu L, Kovacs K, Horvath E, Lloyd RV (1991) In situ hybridization study of pro-opiomelanocortin (POMC) gene expression in human pituitary corticotrophs and their adenomas. Virchows Arch A Pathol Anat Histopathol 419:107–113

    CAS  PubMed  Google Scholar 

  103. Nagaya T, Seo H, Kuwayama A et al (1990) Pro-opiomelanocortin gene expression in silent corticotroph-cell adenoma and Cushing's disease. J Neurosurg 72:262–267

    CAS  PubMed  Google Scholar 

  104. de Keyzer Y, Bertagna X, Luton JP, Kahn A (1989) Variable modes of proopiomelanocortin gene transcription in human tumors. Mol Endocrinol 3:215–223

    PubMed  Google Scholar 

  105. McNicol AM, Farquharson MA, Walker E (1991) Non-isotopic in situ hybridization with digoxigenin and alkaline phosphatase labeled oligodeoxynucleotide probes. Applications in pituitary gland. Pathol Res Pract 187:556–558

    CAS  PubMed  Google Scholar 

  106. Fehn M, Farquharson MA, Sautner D, Saeger W, Ludecke DK, McNicol AM (1993) Demonstration of pro-opiomelanocortin mRNA in pituitary adenomas and para-adenomatous gland in Cushing's disease and Nelson's syndrome. J Pathol 169:335–339

    CAS  PubMed  Google Scholar 

  107. Mengod G, Vivanco MM, Christnacher A, Probst A, Palacios JM (1991) Study of pro-opiomelanocortin mRNA expression in human post-mortem pituitaries. Brain Res Mol Brain Res 10:129–137

    CAS  PubMed  Google Scholar 

  108. Lopez JF, Palkovits M, Arato M, Mansour A, Akil H, Watson SJ (1992) Localization and quantification of pro-opiomelanocortin mRNA and glucocorticoid receptor mRNA in pituitaries of suicide victims. Neuroendocrinology 56:491–501

    CAS  PubMed  Google Scholar 

  109. Lloyd RV, Jin L, Fields K et al (1991) Analysis of pituitary hormones and chromogranin A mRNAs in null cell adenomas, oncocytomas, and gonadotroph adenomas by in situ hybridization. Am J Pathol 139:553–564

    CAS  PubMed  Google Scholar 

  110. Baz E, Saeger W, Uhlig H, Fehr S, Ludecke DK (1991) HGH, PRL and beta HCG/beta LH gene expression in clinically inactive pituitary adenomas detected by in situ hybridization. Virchows Arch A Pathol Anat Histopathol 418:405–410

    CAS  PubMed  Google Scholar 

  111. Sakurai T, Seo H, Yamamoto N et al (1988) Detection of mRNA of prolactin and ACTH in clinically nonfunctioning pituitary adenomas. J Neurosurg 69:653–659

    CAS  PubMed  Google Scholar 

  112. Lloyd RV, Jin L (1994) Analysis of chromogranin/secretogranin messenger RNAs in human pituitary adenomas. Diagn Mol Pathol 3:38–45

    CAS  PubMed  Google Scholar 

  113. Song JY, Jin L, Chandler WF et al (1990) Gonadotropin-releasing hormone regulates gonadotropin beta-subunit and chromogranin-B messenger ribonucleic acids in cultured chromogranin-A-positive pituitary adenomas. J Clin Endocrinol Metab 71:622–630

    CAS  PubMed  Google Scholar 

  114. Lloyd RV (2004) Advances in pituitary pathology: use of novel techniques. Front Horm Res 32:146–174. Review

    Google Scholar 

  115. Deng S, Calin GA, Croce CM, Coukos G, Zhang L (2008) Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7:2643–2646

    CAS  PubMed  Google Scholar 

  116. Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492. Review

    Google Scholar 

  117. Bottoni A, Piccin D, Taliati F et al (2005) miR-15a and miR-16–1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285

    CAS  PubMed  Google Scholar 

  118. Bottoni A, Zatelli MC, Ferracin M et al (2007) Identification of differentially expressed microRNAs by microarray: a possible role of microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377

    CAS  PubMed  Google Scholar 

  119. Zatelli MC, degli Uberti EC (2008) MicroRNAs and possible role in pituitary adeoma. Semin Reprod Med 26:453–460

    CAS  PubMed  Google Scholar 

  120. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    CAS  PubMed  Google Scholar 

  121. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340:692–696

    CAS  PubMed  Google Scholar 

  122. Alvaro V, Levy L, Dubray C et al (1993) Invasive human pituitary tumors express a point-mutated alpha-protein kinase-C. J Clin Endocrinol Metab 77:1125–1129

    CAS  PubMed  Google Scholar 

  123. Spada A, Arosio M, Bochicchio D et al (1990) Clinical, biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab 71:1421–1426

    CAS  PubMed  Google Scholar 

  124. Wakabayashi I, Inokuchi K, Hasegawa O, Sugihara H, Minami S (1992) Expression of growth hormone (GH)-releasing factor gene in GH-producing pituitary adenoma. J Clin Endocrinol Metab 74:357–361

    CAS  PubMed  Google Scholar 

  125. Bagasra O, Seshamma T, Pomerantz RJ (1993) Polymerase chain reaction in situ: intracellular amplification and detection of HIV-I proviral DNA and other specific genes. J Immunol Methods 158:131–145

    CAS  PubMed  Google Scholar 

  126. Chen RH, Fuggle SV (1993) In situ cDNA polymerase chain reaction. A novel technique for detecting mRNA expression. Am J Pathol 143:1527–1534

    CAS  PubMed  Google Scholar 

  127. Nuovo GJ, MacConnell P, Forde A, Delvenne P (1991) Detection of human papillomavirus DNA in formalin-fixed tissues by in situ hybridization after amplification by polymerase chain reaction. Am J Pathol 139:847

    CAS  PubMed  Google Scholar 

  128. Jin L, Qian X, Lloyd RV (1995) Comparison of mRNA expression detected by in situ PCR and in situ hybridization in endocrine cells. Cell Vision 2:314–321

    CAS  Google Scholar 

  129. Sanno N, Jin L, Qian X et al (1997) Gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor messenger ribonucleic acids expression in nontumorous and neoplastic pituitaries. J Clin Endocrinol Metab 82:1974–1982

    CAS  PubMed  Google Scholar 

  130. Evans CO, Young AN, Brown MR et al (2001) Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 86:3097–3107

    CAS  PubMed  Google Scholar 

  131. Giorgi RR, Correa-Giannella ML, Casarini AP et al (2005) Metallothionein isoform 3 gene is differentially expressed in corticotropin-producing pituitary adenomas. Neuroendocrinology 82:208–214

    CAS  PubMed  Google Scholar 

  132. Moreno CS, Evans CO, Zhan X et al (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 15:10214–10222

    Google Scholar 

  133. Morris DG, Musat M, Czirjak S et al (2005) Differential gene expression in pituitary adenomas by oligonucleotide array analysis. Eur J Endocrinol 153:143–151

    CAS  PubMed  Google Scholar 

  134. Ruebel KH, Leontovich AA, Jin L et al (2006) Patterns of gene expression in pituitary carcinomas and adenomas analyzed by high-density oligonucleotide arrays, reverse transcriptase-quantitative PCR and protein expression. Endocrine 29:435–444

    CAS  PubMed  Google Scholar 

  135. Hussaini IM, Trotter C, Zhao Y et al (2007) Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increased invasion in human pituitary adenoma cell line. Am J Pathol 170:356–365

    CAS  PubMed  Google Scholar 

  136. Wierinckx A, Auger C, Devauchelle P et al (2007) A diagnostic marker set for invasion, proliferation and aggressiveness of prolactin pituitary tumors. Endocr Relat Cancer 14:887–900

    CAS  PubMed  Google Scholar 

  137. Hu J, Song H, Wang X et al (2007) Gene expression profiling in human null cell pituitary adenoma tissue. Pituitary 10:47–52

    CAS  PubMed  Google Scholar 

  138. Ruebel KH, Leontovich AA, Tanizaki Y et al (2008) Effects of TGFbeta1 on gene expression in the HP75 human pituitary tumor cell line identified by gene expression profiling. Endocrine 33:62–76

    CAS  PubMed  Google Scholar 

  139. Evans CO, Moreno CS, Zhan X et al (2008) Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR and proteomic analyses. Pituitary 11:231–245

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lloyd, R.V. (2010). Recent Developments in the Molecular Biology of Pituitary Tumors. In: Lloyd, R. (eds) Endocrine Pathology:. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1069-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1069-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1068-4

  • Online ISBN: 978-1-4419-1069-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics