Skip to main content

Recent Developments in Molecular Embryogenesis and Molecular Biology of the Pituitary

  • Chapter
  • First Online:
Endocrine Pathology:

Abstract

The functions of anterior pituitary cells are regulated by hypothalamic hormones. Anterior pituitary cell functions are also controlled by transcription factors which have regulatory roles in early pituitary development. Morphogenetic signaling molecules, such as fibroblast growth factor 8, morphogenetic proteins, sonic hedgehog, and Wnt4, have critical roles in the early development of anterior pituitary. Notch signaling is required for maintaining the expression of the transcription factor Prop1 which is needed for GH-PRL-TSH lineage differentiation. Mutations of specific transcription factors can lead to abnormalities in pituitary development and other abnormalities such as some forms of dwarfism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osamura RY, Watanabe K (1978) An immunohistochemical study of epithelial cells in the posterior lobe and pars tuberalis of the human adult pituitary gland. Cell Tissue Res 194:513–524

    Article  CAS  PubMed  Google Scholar 

  2. Kurotani R, Yasuda M, Oyama K et al (2001) Expression of interleukin-6, interleukin-6 receptor (gp80), and the receptor's signal-transducing subunit (gp130) in human normal pituitary glands and pituitary adenomas. Mod Pathol 14:791–797

    Article  CAS  PubMed  Google Scholar 

  3. Lewis BM, Pexa A, Francis K et al (2006) Adenosine stimulates connexin 43 expression and gap junctional communication in pituitary folliculostellate cells. FASEB J 20:2585–2587

    Article  CAS  PubMed  Google Scholar 

  4. Ikeda H, Suzuki J, Sasano N, Niizuma H (1988) The development and morphogenesis of the human pituitary gland. Anat Embryol (Berl) 178:327–336

    Article  CAS  Google Scholar 

  5. Gaston-Massuet C, Andoniadou CL, Signore M et al (2008) Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev Biol 324:322–333

    Article  CAS  PubMed  Google Scholar 

  6. Ellsworth BS, Butts DL, Camper SA (2008) Mechanisms underlying pituitary hypoplasia and failed cell specification in Lhx3-deficient mice. Dev Biol 313:118–129

    Article  CAS  PubMed  Google Scholar 

  7. Charles MA, Suh H, Hjalt TA, Drouin J, Camper SA, Gage PJ (2005) PITX genes are required for cell survival and Lhx3 activation. Mol Endocrinol 19:1893–1903

    Article  CAS  PubMed  Google Scholar 

  8. Pulichino AM, Lamolet B, Vallette-Kasic S et al (2004) Tpit−/−NeuroD1−/− mice reveal novel aspects of corticotroph development. Endocr Res 30:551–552

    Article  PubMed  Google Scholar 

  9. Szeto DP, Rodriguez-Esteban C, Ryan AK et al (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13:484–494

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Morales DC, Hermesz E, Lee WK, Pfaff SL, Westphal H (2006) Reduced expression of the LIM-homeobox gene Lhx3 impairs growth and differentiation of Rathke's pouch and increases cell apoptosis during mouse pituitary development. Mech Dev 123:605–613

    Article  CAS  PubMed  Google Scholar 

  11. Ellsworth BS, Egashira N, Haller JL et al (2006) FOXL2 in the pituitary: molecular, genetic, and developmental analysis. Mol Endocrinol 20:2796–2805

    Article  CAS  PubMed  Google Scholar 

  12. Haugen BR, Gordon DF, Nelson AR, Wood WM, Ridgway EC (1994) The combination of Pit-1 and Pit-1T have a synergistic stimulatory effect on the thyrotropin beta-subunit promoter but not the growth hormone or prolactin promoters. Mol Endocrinol 8:1574–1582

    Article  CAS  PubMed  Google Scholar 

  13. Poulin G, Lebel M, Chamberland M, Paradis FW, Drouin J (2000) Specific protein–protein interaction between basic helix-loop-helix transcription factors and homeoproteins of the Pitx family. Mol Cell Biol 20:4826–4837

    Article  CAS  PubMed  Google Scholar 

  14. Dasen JS, O'Connell SM, Flynn SE et al (1999) Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 97:587–598

    Article  CAS  PubMed  Google Scholar 

  15. Tuggle CK, Trenkle A (1996) Control of growth hormone synthesis. Domest Anim Endocrinol 13:1–33

    Article  CAS  PubMed  Google Scholar 

  16. Henke A, Luetjens CM, Simoni M, Gromoll J (2007) Chorionic gonadotropin beta-subunit gene expression in the marmoset pituitary is controlled by steroidogenic factor 1, early growth response protein 1, and pituitary homeobox factor 1. Endocrinology 148:6062–6072

    Article  CAS  PubMed  Google Scholar 

  17. Rhodes SJ, Chen R, DiMattia GE et al (1993) A tissue-specific enhancer confers Pit-1-dependent morphogen inducibility and autoregulation on the pit-1 gene. Genes Dev 7:913–932

    Article  CAS  PubMed  Google Scholar 

  18. Scully KM, Rosenfeld MG (2002) Pituitary development: regulatory codes in mammalian organogenesis. Science 295:2231–2235

    Article  CAS  PubMed  Google Scholar 

  19. Miyakoshi T, Takei M, Kajiya H et al (2008) Expression of Wnt4 in human pituitary adenomas regulates activation of the beta-catenin-independent pathway. Endocr Pathol 19:261–273

    Article  CAS  PubMed  Google Scholar 

  20. Zhu X, Zhang J, Tollkuhn J et al (2006) Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes Dev 20:2739–2753

    Article  CAS  PubMed  Google Scholar 

  21. Raetzman LT, Ross SA, Cook S, Dunwoodie SL, Camper SA, Thomas PQ (2004) Developmental regulation of Notch signaling genes in the embryonic pituitary: Prop1 deficiency affects Notch2 expression. Dev Biol 265:329–340

    Article  CAS  PubMed  Google Scholar 

  22. Raetzman LT, Cai JX, Camper SA (2007) Hes1 is required for pituitary growth and melanotrope specification. Dev Biol 304:455–466

    Article  CAS  PubMed  Google Scholar 

  23. Li S, Crenshaw EB 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347:528–533

    Article  CAS  PubMed  Google Scholar 

  24. Voutetakis A, Maniati-Christidi M, Kanaka-Gantenbein C et al (2004) Prolonged jaundice and hypothyroidism as the presenting symptoms in a neonate with a novel Prop1 gene mutation (Q83X). Eur J Endocrinol 150:257–264

    Article  CAS  PubMed  Google Scholar 

  25. Turton JP, Mehta A, Raza J et al (2005) Mutations within the transcription factor PROP1 are rare in a cohort of patients with sporadic combined pituitary hormone deficiency (CPHD). Clin Endocrinol (Oxf) 63:10–18

    Article  CAS  Google Scholar 

  26. Tatsumi KI, Kikuchi K, Tsumura K, Amino N (2004) A novel PROP1 gene mutation (157delA) in Japanese siblings with combined anterior pituitary hormone deficiency. Clin Endocrinol (Oxf) 61:635–640

    Article  CAS  Google Scholar 

  27. Reynaud R, Chadli-Chaieb M, Vallette-Kasic S et al (2004) A familial form of congenital hypopituitarism due to a PROP1 mutation in a large kindred: phenotypic and in vitro functional studies. J Clin Endocrinol Metab 89:5779–5786

    Article  CAS  PubMed  Google Scholar 

  28. Reynaud R, Barlier A, Vallette-Kasic S et al (2005) An uncommon phenotype with familial central hypogonadism caused by a novel PROP1 gene mutant truncated in the transactivation domain. J Clin Endocrinol Metab 90:4880–4887

    Article  CAS  PubMed  Google Scholar 

  29. Paracchini R, Giordano M, Corrias A et al (2003) Two new PROP1 gene mutations responsible for compound pituitary hormone deficiency. Clin Genet 64:142–147

    Article  CAS  PubMed  Google Scholar 

  30. Pakarinen P, Kimura S, El-Gehani F, Pelliniemi LJ, Huhtaniemi I (2002) Pituitary hormones are not required for sexual differentiation of male mice: phenotype of the T/ebp/Nkx2.1 null mutant mice. Endocrinology 143:4477–4482

    Article  CAS  PubMed  Google Scholar 

  31. Thomas PQ, Dattani MT, Brickman JM et al (2001) Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet 10:39–45

    Article  CAS  PubMed  Google Scholar 

  32. Raetzman LT, Ward R, Camper SA (2002) Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia. Development 129:4229–4239

    CAS  PubMed  Google Scholar 

  33. Netchine I, Sobrier ML, Krude H et al (2000) Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 25:182–186

    Article  CAS  PubMed  Google Scholar 

  34. Zhao L, Bakke M, Krimkevich Y et al (2001) Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function. Development 128:147–154

    CAS  PubMed  Google Scholar 

  35. Egashira N, Minematsu T, Miyai S, Takekoshi S, Camper SA, Osamura RY (2008) Pituitary changes in Prop1 transgenic mice: hormone producing tumors and signet-ring type gonadotropes. Acta Histochem Cytochem 41:47–57

    Article  CAS  PubMed  Google Scholar 

  36. Gleiberman AS, Michurina T, Encinas JM et al (2008) Genetic approaches identify adult pituitary stem cells. Proc Natl Acad Sci U S A 105:6332–6337

    Article  CAS  PubMed  Google Scholar 

  37. Chen J, Hersmus N, Van Duppen V, Caesens P, Denef C, Vankelecom H (2005) The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology 146:3985–3998

    Article  CAS  PubMed  Google Scholar 

  38. Inoue K, Hattori M, Sakai T, Inukai S, Fujimoto N, Ito A (1990) Establishment of a series of pituitary clonal cell lines differing in morphology, hormone secretion, and response to estrogen. Endocrinology 126:2313–2320

    Article  CAS  PubMed  Google Scholar 

  39. Fujimoto N, Watanabe H, Ito A, Inoue K (1991) Estrogen receptor levels and tumor growth in a series of pituitary clonal cell lines in rats. Jpn J Cancer Res 82:1436–1441

    CAS  PubMed  Google Scholar 

  40. Fujimoto N, Maruyama S, Ito A (1999) Establishment of an estrogen responsive rat pituitary cell sub-line MtT/E-2. Endocr J 46:389–396

    Article  CAS  PubMed  Google Scholar 

  41. Windle JJ, Weiner RI, Mellon PL (1990) Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol 4:597–603

    Article  CAS  PubMed  Google Scholar 

  42. Horn F, Bilezikjian LM, Perrin MH et al (1991) Intracellular responses to gonadotropin-releasing hormone in a clonal cell line of the gonadotrope lineage. Mol Endocrinol 5:347–355

    Article  CAS  PubMed  Google Scholar 

  43. Turgeon JL, Kimura Y, Waring DW, Mellon PL (1996) Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line. Mol Endocrinol 10:439–450

    Article  CAS  PubMed  Google Scholar 

  44. Attardi B, Klatt B, Little G (1995) Repression of glycoprotein hormone alpha-subunit gene expression and secretion by activin in alpha T3-1 cells. Mol Endocrinol 9:1737–1749

    Article  CAS  PubMed  Google Scholar 

  45. Oka H, Jin L, Kulig E, Scheithauer BW, Lloyd RV (1999) Pituitary adenylate cyclase-activating polypeptide inhibits transforming growth factor-beta1-induced apoptosis in a human pituitary adenoma cell line. Am J Pathol 155:1893–1900

    CAS  PubMed  Google Scholar 

  46. Suzuki M, Egashira N, Kajiya H et al (2008) ACTH and alpha-subunit are coexpressed in rare human pituitary corticotroph cell adenomas proposed to originate from ACTH-committed early pituitary progenitor cells. Endocr Pathol 19:17–26

    Article  CAS  PubMed  Google Scholar 

  47. Sanno N, Teramoto A, Matsuno A, Osamura RY (1996) Expression of human Pit-1 product in the human pituitary and pituitary adenomas. Immunohistochemical studies using an antibody against synthetic human Pit-1 product. Arch Pathol Lab Med 120:73–77

    CAS  PubMed  Google Scholar 

  48. Oyama K, Sanno N, Teramoto A, Osamura RY (2001) Expression of neuro D1 in human normal pituitaries and pituitary adenomas. Mod Pathol 14:892–899

    Article  CAS  PubMed  Google Scholar 

  49. Savage JJ, Yaden BC, Kiratipranon P, Rhodes SJ (2003) Transcriptional control during mammalian anterior pituitary development. Gene 319:1–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Y. Osamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Osamura, R.Y., Egashira, N. (2010). Recent Developments in Molecular Embryogenesis and Molecular Biology of the Pituitary. In: Lloyd, R. (eds) Endocrine Pathology:. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1069-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1069-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1068-4

  • Online ISBN: 978-1-4419-1069-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics