Hypothalamus and Neurohypophysis

  • Kazuhiro Takahashi
  • Osamu Murakami
  • Toraichi Mouri
Chapter

Abstract

The hypothalamus has essential roles in the central regulation of hormone secretion in most of endocrine organs, as well as a variety of autonomic functions such as the regulation of appetite, reproduction, temperature, water-electrolyte metabolism, circulation, emotional states, and sleep. Hypothalamic hormones such as corticotropin-releasing hormone (CRH) are produced in the neurons in the hypothalamus, and transported to the median eminence via the axonal transport and then to the anterior pituitary lobe via the pituitary portal vessels. In contrast, vasopressin and oxytocin produced in the magnocellular neurons of the paraventricular and supraoptic nuclei are transported to the neurohypophysis via the axonal transport and released into the circulation. Hypothalamus and neurohypophysis are therefore related to a variety of diseases, such as hypogonadism, precocious puberty, obesity, diabetes insipidus, and narcolepsy. This chapter describes the pathology of the hypothalamus and neurohypophysis, as well as their anatomy and physiology. In particular, focus has been laid on recent molecular advances in the physiology and diseases of hypothalamus and neurohypophysis.

Keywords

Hypothalamus Neurohypophysis Neuropeptide Diabetes insipidus Obesity 

References

  1. 1.
    Wade N (1978) Guillemin and Schally: The years in the wilderness. Science 200:279–282PubMedGoogle Scholar
  2. 2.
    Wade N (1978) Guillemin and Schally: The three-lap race to Stockholm. Science 200:411–415PubMedGoogle Scholar
  3. 3.
    Wade N (1978) Guillemin and Schally: A race spurred by rivalry. Science 200:510–513PubMedGoogle Scholar
  4. 4.
    Boler J, Enzmann F, Folkers K, Bowers CY, Schally AV (1969) The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun 37:705–710PubMedGoogle Scholar
  5. 5.
    Burgus R, Dunn TF, Desiderio D, Ward DN, Vale W, Guillemin R (1970) Characterization of ovine hypothalamic hypophysiotropic TSH-releasing factor. Nature 226:321–325PubMedGoogle Scholar
  6. 6.
    Schally AV, Arimura A, Baba Y, Nair RM, Matsuo H, Redding TW, Debeljuk L (1971) Isolation and properties of the FSH and LH-releasing hormone. Biochem Biophys Res Commun 43:393–399PubMedGoogle Scholar
  7. 7.
    Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79PubMedGoogle Scholar
  8. 8.
    Guillemin R, Brazeau P, Bohlen P, Esch F, Ling N, Wehrenberg WB (1982) Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218:585–587PubMedGoogle Scholar
  9. 9.
    Rivier J, Spiess J, Thorner M, Vale W (1982) Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300:276–278PubMedGoogle Scholar
  10. 10.
    Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397PubMedGoogle Scholar
  11. 11.
    Shibahara S, Morimoto Y, Furutani Y, Notake M, Takahashi H, Shimizu S, Horikawa S, Numa S (1983) Isolation and sequence analysis of the human corticotropin-releasing factor precursor gene. EMBO J 2:775–779PubMedGoogle Scholar
  12. 12.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedGoogle Scholar
  13. 13.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660PubMedGoogle Scholar
  14. 14.
    Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198PubMedGoogle Scholar
  15. 15.
    Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418:650–654PubMedGoogle Scholar
  16. 16.
    Mouri T, Itoi K, Takahashi K, Suda T, Murakami O, Yoshinaga K, Andoh N, Ohtani H, Masuda T, Sasano N (1993) Colocalization of corticotropin-releasing factor and vasopressin in the paraventricular nucleus of the human hypothalamus. Neuroendocrinology 57:34–39PubMedGoogle Scholar
  17. 17.
    de Keyzer Y, Auzan C, Lenne F, Beldjord C, Thibonnier M, Bertagna X, Clauser E (1994) Cloning and characterization of the human V3 pituitary vasopressin receptor. FEBS Lett 356:215–220PubMedGoogle Scholar
  18. 18.
    Jard S, Gaillard RC, Guillon G, Marie J, Schoenenberg P, Muller AF, Manning M, Sawyer WH (1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30:171–177PubMedGoogle Scholar
  19. 19.
    Morley JE (1981) Neuroendocrine control of thyrotropin secretion. Endocr Rev 2:396–436PubMedGoogle Scholar
  20. 20.
    Takahashi K, Murakami O, Satoh F, Mouri T (2000) The hypothalamus and neurohypophysis. In: Stefaneanu L, Sasano H, Kovacs K (eds) Molecular and cellular endocrine pathology. Arnold, London, pp 45–74Google Scholar
  21. 21.
    Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077PubMedGoogle Scholar
  22. 22.
    Murphy KG (2005) Kisspeptins: regulators of metastasis and the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol 17:519–525PubMedGoogle Scholar
  23. 23.
    Hsu SY, Hsueh AJ (2001) Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med 7:605–611PubMedGoogle Scholar
  24. 24.
    Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, Hogenesch JB, Gulyas J, Rivier J, Vale WW, Sawchenko PE (2001) Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA 98:2843–2848PubMedGoogle Scholar
  25. 25.
    Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C, Vaughan J, Reyes TM, Gulyas J, Fischer W, Bilezikjian L, Rivier J, Sawchenko PE, Vale WW (2001) Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci USA 98:7570–7575PubMedGoogle Scholar
  26. 26.
    Bloch B, Gaillard RC, Brazeau P, Lin HD, Ling N (1984) Topographical and ontogenetic study of the neurons producing growth hormone-releasing factor in human hypothalamus. Regul Pept 8:21–31PubMedGoogle Scholar
  27. 27.
    Desy L, Pelletier G (1977) Immunohistochemical localization of somatostatin in the human hypothalamus. Cell Tissue Res 184:491–497PubMedGoogle Scholar
  28. 28.
    Bowers CY, Momany FA, Reynolds GA, Hong A (1984) On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology 114:1537–1545PubMedGoogle Scholar
  29. 29.
    Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Van der Ploeg LH et al (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974–977PubMedGoogle Scholar
  30. 30.
    Sherwood NM, Lovejoy DA, Coe IR (1993) Origin of mammalian gonadotropin-releasing hormones. Endocr Rev 14:241–254PubMedGoogle Scholar
  31. 31.
    Schwanzel-Fukuda M, Jorgenson KL, Bergen HT, Weesner GD, Pfaff DW (1992) Biology of normal luteinizing hormone-releasing hormone neurons during and after their migration from olfactory placode. Endocr Rev 13:623–634PubMedGoogle Scholar
  32. 32.
    King JC, Anthony EL (1984) LHRH neurons and their projections in humans and other mammals: species comparisons. Peptides 5(Suppl 1):195–207PubMedGoogle Scholar
  33. 33.
    Terasawa E, Fernandez DL (2001) Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 22:111–151PubMedGoogle Scholar
  34. 34.
    Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627PubMedGoogle Scholar
  35. 35.
    Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC (2008) A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 358:709–715PubMedGoogle Scholar
  36. 36.
    Lamberts SW, Macleod RM (1990) Regulation of prolactin secretion at the level of the lactotroph. Physiol Rev 70:279–318PubMedGoogle Scholar
  37. 37.
    Kato Y, Iwasaki Y, Iwasaki J, Abe H, Yanaihara N, Imura H (1978) Prolactin release by vasoactive intestinal polypeptide in rats. Endocrinology 103:554–558PubMedGoogle Scholar
  38. 38.
    Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T, Nishimura O, Onda H, Fujino M (1998) A prolactin-releasing peptide in the brain. Nature 393:272–276PubMedGoogle Scholar
  39. 39.
    Itoh N, Obata K, Yanaihara N, Okamoto H (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549PubMedGoogle Scholar
  40. 40.
    de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, Milgrom E (1997) A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 337:1597–1602PubMedGoogle Scholar
  41. 41.
    Layman LC, Cohen DP, Jin M, Xie J, Li Z, Reindollar RH, Bolbolan S, Bick DP, Sherins RR, Duck LW, Musgrove LC, Sellers JC, Neill JD (1998) Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet 18:14–15PubMedGoogle Scholar
  42. 42.
    Wajnrajch MP, Gertner JM, Harbison MD, Chua SC Jr, Leibel RL (1996) Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat Genet 12:88–90PubMedGoogle Scholar
  43. 43.
    Maheshwari HG, Silverman BL, Dupuis J, Baumann G (1998) Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: Dwarfism of Sindh. J Clin Endocrinol Metab 83:4065–4074PubMedGoogle Scholar
  44. 44.
    Netchine I, Talon P, Dastot F, Vitaux F, Goossens M, Amselem S (1998) Extensive phenotypic analysis of a family with growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. J Clin Endocrinol Metab 83:432–436PubMedGoogle Scholar
  45. 45.
    Collu R, Tang J, Castagne J, Lagace G, Masson N, Huot C, Deal C, Delvin E, Faccenda E, Eidne KA, Van Vliet G (1997) A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab 82:1561–1565PubMedGoogle Scholar
  46. 46.
    Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340:692–696PubMedGoogle Scholar
  47. 47.
    Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR et al (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659PubMedGoogle Scholar
  48. 48.
    Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM (1991) Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325:1688–1695PubMedGoogle Scholar
  49. 49.
    Schwindinger WF, Francomano CA, Levine MA (1992) Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci USA 89:5152–5156PubMedGoogle Scholar
  50. 50.
    Asa SL, Kovacs K, Tindall GT, Barrow DL, Horvath E, Vecsei P (1984) Cushing’s disease associated with an intrasellar gangliocytoma producing corticotrophin-releasing factor. Ann Intern Med 101:789–793PubMedGoogle Scholar
  51. 51.
    Asa SL, Scheithauer BW, Bilbao JM, Horvath E, Ryan N, Kovacs K, Randall RV, Laws ER Jr, Singer W, Linfoot JA et al (1984) A case for hypothalamic acromegaly: a clinicopathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing factor. J Clin Endocrinol Metab 58:796–803PubMedGoogle Scholar
  52. 52.
    Stevens RE, Moore GE (1983) Inadequacy of APUD concept in explaining production of peptide hormones by tumours. Lancet 1:118–119PubMedGoogle Scholar
  53. 53.
    Debeneix C, Bourgeois M, Trivin C, Sainte-Rose C, Brauner R (2001) Hypothalamic hamartoma: comparison of clinical presentation and magnetic resonance images. Horm Res 56:12–18PubMedGoogle Scholar
  54. 54.
    Zuniga OF, Tanner SM, Wild WO, Mosier HD Jr (1983) Hamartoma of CNS associated with precocious puberty. Am J Dis Child 137:127–133PubMedGoogle Scholar
  55. 55.
    Culler FL, James HE, Simon ML, Jones KL (1985) Identification of gonadotropin-releasing hormone in neurons of a hypothalamic hamartoma in a boy with precocious puberty. Neurosurgery 17:408–412PubMedGoogle Scholar
  56. 56.
    Judge DM, Kulin HE, Page R, Santen R, Trapukdi S (1977) Hypothalamic hamartoma: a source of luteinizing-hormone-releasing factor in precocious puberty. N Engl J Med 296:7–10PubMedGoogle Scholar
  57. 57.
    Losa M, Schopohl J, von Werder K (1993) Ectopic secretion of growth hormone-releasing hormone in man. J Endocrinol Invest 16:69–81PubMedGoogle Scholar
  58. 58.
    Faglia G, Arosio M, Bazzoni N (1992) Ectopic acromegaly. Endocrinol Metab Clin North Am 21:575–595PubMedGoogle Scholar
  59. 59.
    Carey RM, Varma SK, Drake CR Jr, Thorner MO, Kovacs K, Rivier J, Vale W (1984) Ectopic secretion of corticotropin-releasing factor as a cause of Cushing’s syndrome. A clinical, morphologic, and biochemical study. N Engl J Med 311:13–20PubMedGoogle Scholar
  60. 60.
    Belsky JL, Cuello B, Swanson LW, Simmons DM, Jarrett RM, Braza F (1985) Cushing’s syndrome due to ectopic production of corticotropin-releasing factor. J Clin Endocrinol Metab 60:496–500PubMedGoogle Scholar
  61. 61.
    Suda T, Tomori N, Tozawa F, Demura H, Shizume K, Mouri T, Miura Y, Sasano N (1984) Immunoreactive corticotropin and corticotropin-releasing factor in human hypothalamus, adrenal, lung cancer, and pheochromocytoma. J Clin Endocrinol Metab 58:919–924PubMedGoogle Scholar
  62. 62.
    White A, Ray DW, Talbot A, Abraham P, Thody AJ, Bevan JS (2000) Cushing’s syndrome due to phaeochromocytoma secreting the precursors of adrenocorticotropin. J Clin Endocrinol Metab 85:4771–4775PubMedGoogle Scholar
  63. 63.
    Soga J, Yakuwa Y (1999) Somatostatinoma/inhibitory syndrome: a statistical evaluation of 173 reported cases as compared to other pancreatic endocrinomas. J Exp Clin Cancer Res 18:13–22PubMedGoogle Scholar
  64. 64.
    Nakai S, Kawano H, Yudate T et al (1995) The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev 9:3109–3121PubMedGoogle Scholar
  65. 65.
    Schonemann MD, Ryan AK, McEvilly RJ, O’Connell SM, Arias CA, Kalla KA, Li P, Sawchenko PE, Rosenfeld MG (1995) Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev 9:3122–3135PubMedGoogle Scholar
  66. 66.
    Michaud JL, Rosenquist T, May NR, Fan CM (1998) Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 12:3264–3275PubMedGoogle Scholar
  67. 67.
    Hosoya T, Oda Y, Takahashi S, Morita M, Kawauchi S, Ema M, Yamamoto M, Fujii-Kuriyama Y (2001) Defective development of secretory neurones in the hypothalamus of Arnt2-knockout mice. Genes Cells 6:361–374PubMedGoogle Scholar
  68. 68.
    Acampora D, Postiglione MP, Avantaggiato V, Di Bonito M, Vaccarino FM, Michaud J, Simeone A (1999) Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 13:2787–2800PubMedGoogle Scholar
  69. 69.
    Li H, Zeitler PS, Valerius MT, Small K, Potter SS (1996) Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J 15:714–724PubMedGoogle Scholar
  70. 70.
    Stopa EG, LeBlanc VK, Hill DH, Anthony EL (1993) A general overview of the anatomy of the neurohypophysis. Ann NY Acad Sci 689:6–15PubMedGoogle Scholar
  71. 71.
    Fahrenholz F, Jurzak M, Gerstberger R, Haase W (1993) Renal and central vasopressin receptors: immunocytochemical localization. Ann NY Acad Sci 689:194–206PubMedGoogle Scholar
  72. 72.
    Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM (1996) Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 93:11699–11704PubMedGoogle Scholar
  73. 73.
    Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T, Yanagisawa T, Kimura T, Matzuk MM, Young LJ, Nishimori K (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA 102:16096–16101PubMedGoogle Scholar
  74. 74.
    Gutkowska J, Jankowski M, Lambert C, Mukaddam-Daher S, Zingg HH, McCann SM (1997) Oxytocin releases atrial natriuretic ­peptide by combining with oxytocin receptors in the heart. Proc Natl Acad Sci USA 94:11704–11709PubMedGoogle Scholar
  75. 75.
    Jankowski M, Wang D, Hajjar F, Mukaddam-Daher S, McCann SM, Gutkowska J (2000) Oxytocin and its receptors are synthesized in the rat vasculature. Proc Natl Acad Sci USA 97:6207–6211PubMedGoogle Scholar
  76. 76.
    Mukaddam-Daher S, Yin YL, Roy J, Gutkowska J, Cardinal R (2001) Negative inotropic and chronotropic effects of oxytocin. Hypertension 38:292–296PubMedGoogle Scholar
  77. 77.
    Conrad KP, Gellai M, North WG, Valtin H (1993) Influence of oxytocin on renal hemodynamics and sodium excretion. Ann NY Acad Sci 689:346–362PubMedGoogle Scholar
  78. 78.
    Ito M, Mori Y, Oiso Y, Saito H (1991) A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Invest 87:725–728PubMedGoogle Scholar
  79. 79.
    Bahnsen U, Oosting P, Swaab DF, Nahke P, Richter D, Schmale H (1992) Amissense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J 11:19–23PubMedGoogle Scholar
  80. 80.
    Krishnamani MR, Phillips JA 3rd, Copeland KC (1993) Detection of a novel arginine vasopressin defect by dideoxy fingerprinting. J Clin Endocrinol Metab 77:596–598PubMedGoogle Scholar
  81. 81.
    McLeod JF, Kovacs L, Gaskill MB, Rittig S, Bradley GS, Robertson GL (1993) Familial neurohypophyseal diabetes insipidus associated with a signal peptide mutation. J Clin Endocrinol Metab 77:599A–599GPubMedGoogle Scholar
  82. 82.
    Ito M, Oiso Y, Murase T, Kondo K, Saito H, Chinzei T, Racchi M, Lively MO (1993) Possible involvement of inefficient cleavage of preprovasopressin by signal peptidase as a cause for familial central diabetes insipidus. J Clin Invest 91:2565–2571PubMedGoogle Scholar
  83. 83.
    Miller WL (1993) Molecular genetics of familial central diabetes insipidus. J Clin Endocrinol Metab 77:592–595PubMedGoogle Scholar
  84. 84.
    Green JR, Buchan GC, Alvord EC Jr, Swanson AG (1967) Heredtary and idiopathic types of diabetes insipidus. Brain 90:707–714PubMedGoogle Scholar
  85. 85.
    Braverman LE, Mancini JP, McGoldrick DM (1965) Hereditary idiopathic diabetes insipidus. A case report with autopsy findings. Ann Intern Med 63:503–508PubMedGoogle Scholar
  86. 86.
    Barrett TG, Bundey SE (1997) Wolfram (DIDMOAD) syndrome. J Med Genet 34:838–841PubMedGoogle Scholar
  87. 87.
    Barrett TG, Bundey SE, Macleod AF (1995) Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 346:1458–1463PubMedGoogle Scholar
  88. 88.
    Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148PubMedGoogle Scholar
  89. 89.
    Takeda K, Inoue H, Tanizawa Y, Matsuzaki Y, Oba J, Watanabe Y, Shinoda K, Oka Y (2001) WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 10:477–484PubMedGoogle Scholar
  90. 90.
    Yamada T, Ishihara H, Tamura A, Takahashi R, Yamaguchi S, Takei D, Tokita A, Satake C, Tashiro F, Katagiri H, Aburatani H, Miyazaki J, Oka Y (2006) WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells. Hum Mol Genet 15:1600–1609PubMedGoogle Scholar
  91. 91.
    Imura H, Nakao K, Shimatsu A, Ogawa Y, Sando T, Fujisawa I, Yamabe H (1993) Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med 329:683–689PubMedGoogle Scholar
  92. 92.
    Thodou E, Asa SL, Kontogeorgos G, Kovacs K, Horvath E, Ezzat S (1995) Clinical case seminar: lymphocytic hypophysitis: clinicopathological findings. J Clin Endocrinol Metab 80:2302–2311PubMedGoogle Scholar
  93. 93.
    Rosenthal W, Seibold A, Antaramian A, Lonergan M, Arthus MF, Hendy GN, Birnbaumer M, Bichet DG (1992) Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359:233–235PubMedGoogle Scholar
  94. 94.
    Deen PM, Verdijk MA, Knoers NV, Wieringa B, Monnens LA, van Os CH, van Oost BA (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95PubMedGoogle Scholar
  95. 95.
    van Lieburg AF, Verdijk MA, Knoers VV, van Essen AJ, Proesmans W, Mallmann R, Monnens LA, van Oost BA, van Os CH, Deen PM (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet 55:648–652PubMedGoogle Scholar
  96. 96.
    Ellison DH, Berl T (2007) Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med 356:2064–2072PubMedGoogle Scholar
  97. 97.
    Welt LG (1962) Hypo- and hypernatremia. Ann Intern Med 56:161–164PubMedGoogle Scholar
  98. 98.
    Gossain VV, Kinzel T, Strand CV, Rovner DR (1978) Essential hypernatremia. Am J Med Sci 275:353–358PubMedGoogle Scholar
  99. 99.
    DeRubertis FR, Michelis MF, Beck N, Field JB, Davis BB (1971) “Essential” hypernatremia due to ineffective osmotic and intact volume regulation of vasopressin secretion. J Clin Invest 50:97–111PubMedGoogle Scholar
  100. 100.
    DeRubertis FR, Michelis MF, Davis BB (1974) “Essential” hypernatremia. Report of three cases and review of the literature. Arch Intern Med 134:889–895PubMedGoogle Scholar
  101. 101.
    Voelker JL, Campbell RL, Muller J (1991) Clinical, radiographic, and pathological features of symptomatic Rathke’s cleft cysts. J Neurosurg 74:535–544 ReviewPubMedGoogle Scholar
  102. 102.
    Iwai H, Ohno Y, Hoshiro M, Fujimoto M, Nishimura A, Kishitani Y, Aoki N (2000) Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) and adrenal insufficiency induced by rathke’s cleft cyst: a case report. Endocr J 47:393–399PubMedGoogle Scholar
  103. 103.
    Barrow DL, Spector RH, Takei Y, Tindall GT (1985) Symptomatic Rathke’s cleft cysts located entirely in the suprasellar region: review of diagnosis, management, and pathogenesis. Neurosurgery 16:766–772PubMedGoogle Scholar
  104. 104.
    Hoffman HJ, Yoshida M, Becker LE, Hendrick EB, Humphreys RP (1984) Experience with pineal region tumours in childhood. Neurol Res 6:107–112PubMedGoogle Scholar
  105. 105.
    Sawamura Y, Ikeda J, Shirato H, Tada M, Abe H (1998) Germ cell tumours of the central nervous system: treatment consideration based on 111 cases and their long-term clinical outcomes. Eur J Cancer 34:104–110PubMedGoogle Scholar
  106. 106.
    Grinspoon SK, Bilezikian JP (1992) HIV disease and the endocrine system. N Engl J Med 327:1360–1365PubMedGoogle Scholar
  107. 107.
    Moses AM, Thomas DG, Canfield MC, Collins GH (2003) Central diabetes insipidus due to cytomegalovirus infection of the hypothalamus in a patient with acquired immunodeficiency syndrome: a clinical, pathological, and immunohistochemical case study. J Clin Endocrinol Metab 88:51–54PubMedGoogle Scholar
  108. 108.
    Cheung CC, Ezzat S, Smyth HS, Asa SL (2001) The spectrum and significance of primary hypophysitis. J Clin Endocrinol Metab 86:1048–1053PubMedGoogle Scholar
  109. 109.
    Hurwitz CA, Faquin WC (2002) Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 5-2002. A 15-year-old boy with a retro-orbital mass and impaired vision. N Engl J Med 346:513–520PubMedGoogle Scholar
  110. 110.
    Ladisch S (1998) Langerhans cell histiocytosis. Curr Opin Hematol 5:54–58PubMedGoogle Scholar
  111. 111.
    Murphy GF, Bhan AK, Sato S, Mihm MC Jr, Harrist TJ (1981) A new immunologic marker for human Langerhans cells. N Engl J Med 304:791–792PubMedGoogle Scholar
  112. 112.
    Broadbent V, Dunger DB, Yeomans E, Kendall B (1993) Anterior pituitary function and computed tomography/magnetic resonance imaging in patients with Langerhans cell histiocytosis and diabetes insipidus. Med Pediatr Oncol 21:649–654PubMedGoogle Scholar
  113. 113.
    Braunstein GD, Kohler PO (1981) Endocrine manifestations of histiocytosis. Am J Pediatr Hematol Oncol 3:67–75PubMedGoogle Scholar
  114. 114.
    Chetritt J, Paradis V, Dargere D, Adle-Biassette H, Maurage CA, Mussini JM, Vital A, Wechsler J, Bedossa P (1999) Chester-Erdheim disease: a neoplastic disorder. Hum Pathol 30: 1093–1096PubMedGoogle Scholar
  115. 115.
    Taguchi T, Iwasaki Y, Asaba K, Yoshida T, Takao T, Ikeno F, Nakajima H, Kodama H, Hashimoto K (2008) Erdheim-Chester disease: report of a case with PCR-based analysis of the expression of osteopontin and survivin in Xanthogranulomas following glucocorticoid treatment. Endocr J 55:217–223PubMedGoogle Scholar
  116. 116.
    Mills JA, Gonzalez RG, Jaffe R (2008) Case records of the Massachusetts General Hospital. Case 25-2008. A 43-year-old man with fatigue and lesions in the pituitary and cerebellum. N Engl J Med 359:736–747PubMedGoogle Scholar
  117. 117.
    Winnacker JL, Becker KL, Katz S (1968) Endocrine aspects of sarcoidosis. N Engl J Med 278:483–492PubMedGoogle Scholar
  118. 118.
    Vesely DL, Maldonodo A, Levey GS (1977) Partial hypopituitarism and possible hypothalamic involvement in sarcoidosis: report of a case and review of the literature. Am J Med 62:425–431PubMedGoogle Scholar
  119. 119.
    Stuart CA, Neelon FA, Lebovitz HE (1978) Hypothalamic insufficiency: the cause of hypopituitarism in sarcoidosis. Ann Intern Med 88:589–594PubMedGoogle Scholar
  120. 120.
    Stern BJ, Krumholz A, Johns C, Scott P, Nissim J (1985) Sarcoidosis and its neurological manifestations. Arch Neurol 42:909–917PubMedGoogle Scholar
  121. 121.
    De Bellis A, Colao A, Bizzarro A, Di Salle F, Coronella C, Solimeno S, Vetrano A, Pivonello R, Pisano G, Lombardi G, Bellastella A (2002) Longitudinal study of vasopressin-cell antibodies and of hypothalamic-pituitary region on magnetic resonance imaging in patients with autoimmune and idiopathic complete central diabetes insipidus. J Clin Endocrinol Metab 87:3825–3829PubMedGoogle Scholar
  122. 122.
    Hashimoto K, Takao T, Makino S (1997) Lymphocytic adenohypophysitis and lymphocytic infundibuloneurohypophysitis. Endocr J 44:1–10PubMedGoogle Scholar
  123. 123.
    Brass SD, Durand ML, Stone JH, Chen JW, Stone JR (2008) Case records of the Massachusetts General Hospital. Case 36-2008. A 59-year-old man with chronic daily headache. N Engl J Med 359:2267–2278PubMedGoogle Scholar
  124. 124.
    Hashimoto K, Asaba K, Tamura K, Takao T, Nakamura T (2002) A case of lymphocytic infundibuloneurohypophysitis associated with systemic lupus erythematosus. Endocr J 49:605–610PubMedGoogle Scholar
  125. 125.
    Manetti L, Lupi I, Morselli LL, Albertini S, Cosottini M, Grasso L, Genovesi M, Pinna G, Mariotti S, Bogazzi F, Bartalena L, Martino E (2007) Prevalence and functional significance of antipituitary antibodies in patients with autoimmune and non-autoimmune thyroid diseases. J Clin Endocrinol Metab 92:2176–2181PubMedGoogle Scholar
  126. 126.
    Caturegli P (2007) Autoimmune hypophysitis: an underestimated disease in search of its autoantigen(s). J Clin Endocrinol Metab 92:2038–2040PubMedGoogle Scholar
  127. 127.
    Cone L, Srinivasan M, Romanul FC (1990) Granular cell tumor (choristoma) of the neurohypophysis: two cases and a review of the literature. AJNR Am J Neuroradiol 11:403–406PubMedGoogle Scholar
  128. 128.
    Loh KC, Green A, Dillon WP Jr, Fitzgerald PA, Weidner N, Tyrrell JB (1997) Diabetes insipidus from sarcoidosis confined to the posterior pituitary. Eur J Endocrinol 137:514–519PubMedGoogle Scholar
  129. 129.
    MacColl G, Quinton R, Bouloux PM (2002) GnRH neuronal development: insights into hypogonadotrophic hypogonadism. Trends Endocrinol Metab 13:112–118PubMedGoogle Scholar
  130. 130.
    Chung RT, Misdraji J, Sahani DV (2006) Case records of the Massachusetts General Hospital. Case 33-2006. A 43-year-old man with diabetes, hypogonadism, cirrhosis, arthralgias, and fatigue. N Engl J Med 355:1812–1819PubMedGoogle Scholar
  131. 131.
    Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P et al (1991) A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353:529–536PubMedGoogle Scholar
  132. 132.
    Dodé C, Levilliers J, Dupont JM, De Paepe A, Le Dû N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pêcheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel JC, Delemarre-van de Waal H, Goulet-Salmon B, Kottler ML, Richard O, Sanchez-Franco F, Saura R, Young J, Petit C, Hardelin JP (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33:463–465PubMedGoogle Scholar
  133. 133.
    Salenave S, Chanson P, Bry H, Pugeat M, Cabrol S, Carel JC, Murat A, Lecomte P, Brailly S, Hardelin JP, Dodé C, Young J (2008) Kallmann’s syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 93:758–763PubMedGoogle Scholar
  134. 134.
    Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma J, Dwyer A, Quinton R, Na S, Hall JE, Huot C, Alois N, Pearce SH, Cole LW, Hughes V, Mohammadi M, Tsai P, Pitteloud N (2008) Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 118:2822–2831PubMedGoogle Scholar
  135. 135.
    Dodé C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A, Morgan G, Murat A, Toublanc JE, Wolczynski S, Delpech M, Petit C, Young J, Hardelin JP (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2:e175PubMedGoogle Scholar
  136. 136.
    Pitteloud N, Zhang C, Pignatelli D, Li JD, Raivio T, Cole LW, Plummer L, Jacobson-Dickman EE, Mellon PL, Zhou QY, Crowley WF Jr (2007) Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 104: 17447–17452PubMedGoogle Scholar
  137. 137.
    González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM (2004) Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci 24:10384–10392PubMedGoogle Scholar
  138. 138.
    Pitteloud N, Quinton R, Pearce S, Raivio T, Acierno J, Dwyer A, Plummer L, Hughes V, Seminara S, Cheng YZ, Li WP, Maccoll G, Eliseenkova AV, Olsen SK, Ibrahimi OA, Hayes FJ, Boepple P, Hall JE, Bouloux P, Mohammadi M, Crowley W (2007) Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J Clin Invest 117:457–463PubMedGoogle Scholar
  139. 139.
    de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100:10972–10976PubMedGoogle Scholar
  140. 140.
    Chan YM, de Guillebon A, Lang-Muritano M, Plummer L, Cerrato F, Tsiaras S, Gaspert A, Lavoie HB, Wu CH, Crowley WF Jr, Amory JK, Pitteloud N, Seminara SB (2009) GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 106:11703–11708PubMedGoogle Scholar
  141. 141.
    Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908PubMedGoogle Scholar
  142. 142.
    Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD (1998) A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 18:213–215PubMedGoogle Scholar
  143. 143.
    Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398–401PubMedGoogle Scholar
  144. 144.
    O’Rahilly S, Gray H, Humphreys PJ, Krook A, Polonsky KS, White A, Gibson S, Taylor K, Carr C (1995) Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med 333:1386–1390PubMedGoogle Scholar
  145. 145.
    Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O’Rahilly S (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16:303–306PubMedGoogle Scholar
  146. 146.
    Mantzoros CS, Flier JS, Rogol AD (1997) A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metab 82:1066–1070PubMedGoogle Scholar
  147. 147.
    Yu WH, Kimura M, Walczewska A, Karanth S, McCann SM (1997) Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci USA 94:1023–1028PubMedGoogle Scholar
  148. 148.
    Strosberg AD, Issad T (1999) The involvement of leptin in humans revealed by mutations in leptin and leptin receptor genes. Trends Pharmacol Sci 20:227–230PubMedGoogle Scholar
  149. 149.
    Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y – a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660PubMedGoogle Scholar
  150. 150.
    Takahashi K (2001) Adrenomedullin from a pheochromocytoma to the eye: implications of the adrenomedullin research for endocrinology in the 21st century. Tohoku J Exp Med 193:79–114PubMedGoogle Scholar
  151. 151.
    Stanley BG, Kyrkouli SE, Lampert S, Leibowitz SF (1986) Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7:1189–1192PubMedGoogle Scholar
  152. 152.
    Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI (1983) Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 305:321–323PubMedGoogle Scholar
  153. 153.
    Mouri T, Takahashi K, Kawauchi H, Sone M, Totsune K, Murakami O, Itoi K, Ohneda M, Sasano H, Sasano N (1993) Melanin-concentrating hormone in the human brain. Peptides 14:643–646PubMedGoogle Scholar
  154. 154.
    Takahashi K, Suzuki H, Totsune K, Murakami O, Satoh F, Sone M, Sasano H, Mouri T, Shibahara S (1995) Melanin-concentrating hormone in human and rat. Neuroendocrinology 61:493–498PubMedGoogle Scholar
  155. 155.
    Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247PubMedGoogle Scholar
  156. 156.
    Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396:670–674PubMedGoogle Scholar
  157. 157.
    Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400:261–265PubMedGoogle Scholar
  158. 158.
    Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O (1999) Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400:265–269PubMedGoogle Scholar
  159. 159.
    Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, Bergsma DJ, Gloger IS, Levy DS, Chambers JK, Muir AI (2001) Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem 276:20125–20129PubMedGoogle Scholar
  160. 160.
    de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327PubMedGoogle Scholar
  161. 161.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedGoogle Scholar
  162. 162.
    Broberger C (1999) Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res 848:101–113PubMedGoogle Scholar
  163. 163.
    Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100PubMedGoogle Scholar
  164. 164.
    Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–138PubMedGoogle Scholar
  165. 165.
    Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328PubMedGoogle Scholar
  166. 166.
    Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128PubMedGoogle Scholar
  167. 167.
    Date Y, Shimbara T, Koda S, Toshinai K, Ida T, Murakami N, Miyazato M, Kokame K, Ishizuka Y, Ishida Y, Kageyama H, Shioda S, Kangawa K, Nakazato M (2006) Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab 4:323–331PubMedGoogle Scholar
  168. 168.
    Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719PubMedGoogle Scholar
  169. 169.
    Tanabe A, Yanagiya T, Iida A, Saito S, Sekine A, Takahashi A, Nakamura T, Tsunoda T, Kamohara S, Nakata Y, Kotani K, Komatsu R, Itoh N, Mineo I, Wada J, Funahashi T, Miyazaki S, Tokunaga K, Hamaguchi K, Shimada T, Tanaka K, Yamada K, Hanafusa T, Oikawa S, Yoshimatsu H, Sakata T, Matsuzawa Y, Kamatani N, Nakamura Y, Hotta K (2007) Functional single-nucleotide polymorphisms in the secretogranin III (SCG3) gene that form secretory granules with appetite-related neuropeptides are associated with obesity. J Clin Endocrinol Metab 92:1145–1154PubMedGoogle Scholar
  170. 170.
    Ozata M, Ozdemir IC, Licinio J (1999) Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 84:3686–3695PubMedGoogle Scholar
  171. 171.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157PubMedGoogle Scholar
  172. 172.
    Yaswen L, Diehl N, Brennan MB, Hochgeschwender U (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5:1066–1070PubMedGoogle Scholar
  173. 173.
    Vaisse C, Clement K, Guy-Grand B, Froguel P (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20:113–114PubMedGoogle Scholar
  174. 174.
    Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P (2000) Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 106:253–262PubMedGoogle Scholar
  175. 175.
    Farooqi IS, Yeo GS, Keogh JM, Aminian S, Jebb SA, Butler G, Cheetham T, O’Rahilly S (2000) Dominant and recessive ­inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106:271–279PubMedGoogle Scholar
  176. 176.
    Lee YS, Poh LK, Loke KY (2002) A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J Clin Endocrinol Metab 87:1423–1426PubMedGoogle Scholar
  177. 177.
    Beales PL, Warner AM, Hitman GA, Thakker R, Flinter FA (1997) Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet 34:92–98PubMedGoogle Scholar
  178. 178.
    Grumbach MM, Styne DM (1998) Puberty: ontogeny, neuroendocrinology, physiology, and disorders. In: Wilson JD, Foster DW, Kroneberg HM, Larsen PR (eds) Williams textbook of endocrinology, 9th edn. Saunders, Philadelphia, pp 1509–1625Google Scholar
  179. 179.
    Burman P, Ritzen EM, Lindgren AC (2001) Endocrine dysfunction in Prader-Willi syndrome: a review with special reference to GH. Endocr Rev 22:787–799PubMedGoogle Scholar
  180. 180.
    Swaab DF, Purba JS, Hofman MA (1995) Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases. J Clin Endocrinol Metab 80:573–579PubMedGoogle Scholar
  181. 181.
    Swaab DF (1997) Prader-Willi syndrome and the hypothalamus. Acta Paediatr Suppl 423:50–54PubMedGoogle Scholar
  182. 182.
    Miller L, Angulo M, Price D, Taneja S (1996) MR of the pituitary in patients with Prader-Willi syndrome: size determination and imaging findings. Pediatr Radiol 26:43–47PubMedGoogle Scholar
  183. 183.
    Feigerlová E, Diene G, Conte-Auriol F, Molinas C, Gennero I, Salles JP, Arnaud C, Tauber M (2008) Hyperghrelinemia precedes obesity in Prader-Willi syndrome. J Clin Endocrinol Metab 93:2800–2805PubMedGoogle Scholar
  184. 184.
    Reichlin S (1998) Neuroendocrinology. In: Wilson JD, Foster DW, Kroneberg HM, Larsen PR (eds) Williams textbook of endocrinology, 9th edn. Saunders, Philadelphia, pp 165–248Google Scholar
  185. 185.
    Russell GF, Beardwood CJ (1970) Amenorrhoea in the feeding disorders: anorexia nervosa and obesity. Psychother Psychosom 18:359–364PubMedGoogle Scholar
  186. 186.
    Otto B, Cuntz U, Fruehauf E, Wawarta R, Folwaczny C, Riepl RL, Heiman ML, Lehnert P, Fichter M, Tschöp M (2001) Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 145:669–673PubMedGoogle Scholar
  187. 187.
    Grinspoon S, Gulick T, Askari H, Landt M, Lee K, Anderson E, Ma Z, Vignati L, Bowsher R, Herzog D, Klibanski A (1996) Serum leptin levels in women with anorexia nervosa. J Clin Endocrinol Metab 81:3861–3863PubMedGoogle Scholar
  188. 188.
    Brann DW, Wade MF, Dhandapani KM, Mahesh VB, Buchanan CD (2002) Leptin and reproduction. Steroids 67:95–104PubMedGoogle Scholar
  189. 189.
    Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376PubMedGoogle Scholar
  190. 190.
    Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354PubMedGoogle Scholar
  191. 191.
    Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40PubMedGoogle Scholar
  192. 192.
    Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kazuhiro Takahashi
    • 1
  • Osamu Murakami
  • Toraichi Mouri
  1. 1.Department of Endocrinology & Applied Medical ScienceTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations