Novel Functions of RANK(L) Signaling in the Immune System

  • Andreas Leibbrandt
  • Josef M. PenningerEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 658)


The TNF family members RANKL and its receptor RANK have initially been described as factors expressed on T cells and dendritic cells (DCs), respectively, and have been shown to augment the ability of DCs to stimulate naive T cell proliferation and enhance DC survival. Since another, yet soluble receptor for RANKL, namely OPG, was initially characterized as a factor inhibiting osteoclast development and bone resorption, it was somewhat enigmatic at first why one and the same genes would be essential both for the immune system and bone development – two processes that on first sight do not have much in common. However, in a series of experiments it was conclusively shown that RANKL-expressing T cells can also activate RANK-expressing osteoclasts, and thereby in principal mimicking RANKL-expressing osteoblasts. These findings lead to a paradigm shift and helped to coin the term osteoimmunology in order to account for the crosstalk of immune cells and bone. More importantly was that these findings also provided a rationale for the bone loss observed in patients with a chronically activated immune system such as in rheumatoid arthritis, leukemias, or the like, arguing that T cells, which were activated during the course of the disease to fight it off, also express RANKL, which induces osteoclastogenesis and thereby shifts the intricate balance of bone deposition and resorption in favor of the latter. Through knockout mice it became also clear that the RANKL-RANK-OPG system is involved in other processes such as in controlling autoimmunity or immune responses in the skin. We will briefly summarize the role of RANK(L) signaling in the immune system before we discuss some of the recent data we and others have obtained on the role of RANK(L) in controlling autoimmunity and immune responses in the skin.


RANK RANKL OPG Osteoimmunology Osteoclast Osteoclastogenesis Immune system Rheumatoid arthritis Osteoporosis Autoimmunity 



Tumor Necrosis Factor


Receptor Activator of Nuclear Factor-κB (NF-κB) Ligand


Receptor Activator of Nuclear Factor-κB (NF-κB)




Dendritic Cells




Peyer’s Patches


Lymph Nodes


Autoimmune Lymphoproliferative Syndrome


Cortical Thymic Epithelial Cell


Medullary Thymic Epithelial Cell


Tissue Restricted Antigen


Autoimmune Regulator


Lymphoid Tissue Inducer


eRgulatory T Cells


Langerhans Cells


Rheumatoid Arthritis


Bone Mineral Density


  1. 1.
    Abu-Amer, Y. (2001). IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J Clin Invest, 107: 1375–1385.CrossRefPubMedGoogle Scholar
  2. 2.
    Akiyama, T., Shimo, Y., Yanai, H. et al. (2008). The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity, 29: 423–437.CrossRefPubMedGoogle Scholar
  3. 3.
    Alimzhanov, M.B., Kuprash, D.V., Kosco-Vilbois, M.H. et al. (1997). Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci U S A, 94: 9302–9307.CrossRefPubMedGoogle Scholar
  4. 4.
    Anderson, G., Lane, P.J., & Jenkinson, E.J. (2007). Generating intrathymic microenvironments to establish T-cell tolerance. Nat Rev Immunol, 7: 954–963.CrossRefPubMedGoogle Scholar
  5. 5.
    Anderson, D.M., Maraskovsky, E., Billingsley, W.L. et al. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 390: 175–179.CrossRefPubMedGoogle Scholar
  6. 6.
    Anderson, M.S., Venanzi, E.S., Klein, L. et al. (2002). Projection of an immunological self shadow within the thymus by the aire protein. Science, 298: 1395–1401.CrossRefPubMedGoogle Scholar
  7. 7.
    Bachmann, M.F., Wong, B.R., Josien, R. et al. (1999). TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med, 189: 1025–1031.CrossRefPubMedGoogle Scholar
  8. 8.
    Banchereau, J., & Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature, 392: 245–252.CrossRefPubMedGoogle Scholar
  9. 9.
    Bendele, A., McComb, J., Gould, T. et al. (1999). Animal models of arthritis: relevance to human disease. Toxicol Pathol, 27: 134–142.CrossRefPubMedGoogle Scholar
  10. 10.
    Bendixen, A.C., Shevde, N.K., Dienger, K.M. et al. (2001). IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor gamma 1. Proc Natl Acad Sci USA, 98: 2443–2448; Akiyama, T., Maeda, S., Yamane, S. et al. (2005). Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science, 308: 248–251.CrossRefPubMedGoogle Scholar
  11. 11.
    Boehm, T., Scheu, S., Pfeffer, K. et al. (2003). Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med, 198: 757–769.CrossRefPubMedGoogle Scholar
  12. 12.
    Body, J.J., Facon, T., Coleman, R.E. et al. (2006). A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res, 12: 1221–1228.CrossRefPubMedGoogle Scholar
  13. 13.
    Bone, H.G., Bolognese, M.A., Yuen, C.K. et al. (2008). Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab, 93: 2149–2157.CrossRefPubMedGoogle Scholar
  14. 14.
    Brandt, J., Haibel, H., Cornely, D. et al. (2000). Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab. Arthritis Rheum, 43: 1346–1352.CrossRefPubMedGoogle Scholar
  15. 15.
    Campagnuolo, G., Bolon, B., & Feige, U. (2002). Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis. Arthritis Rheum, 46: 1926–1936; Bolon, B., Campagnuolo, G., & Feige, U. (2002). Duration of bone protection by a single osteoprotegerin injection in rats with adjuvant-induced arthritis. Cell Mol Life Sci, 59: 1569–1576.CrossRefPubMedGoogle Scholar
  16. 16.
    Chin, R.K., Lo, J.C., Kim, O. et al. (2003). Lymphotoxin pathway directs thymic Aire expression. Nat Immunol, 4: 1121–1127.CrossRefPubMedGoogle Scholar
  17. 17.
    Cohen, S.B., Dore, R.K., Lane, N.E. et al. (2008). Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum, 58: 1299–1309.CrossRefPubMedGoogle Scholar
  18. 18.
    De Togni, P., Goellner, J., Ruddle, N.H. et al. (1994). Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science, 264: 703–707.CrossRefPubMedGoogle Scholar
  19. 19.
    Dong, C. (2006). Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol, 6: 329–333.CrossRefPubMedGoogle Scholar
  20. 20.
    Dougall, W.C., & Chaisson, M. (2006). The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev, 25: 541–549.CrossRefPubMedGoogle Scholar
  21. 21.
    Dougall, W.C., Glaccum, M., Charrier, K. et al. (1999). RANK is essential for osteoclast and lymph node development. Genes Dev, 13: 2412–2424.CrossRefPubMedGoogle Scholar
  22. 22.
    Ebeling, P.R., Erbas, B., Hopper, J.L. et al. (1998). Bone mineral density and bone turnover in asthmatics treated with long-term inhaled or oral glucocorticoids. J Bone Miner Res, 13: 1283–1289.CrossRefPubMedGoogle Scholar
  23. 23.
    Emery, J.G., McDonnell, P., Burke, M.B. et al. (1998). Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem, 273: 14363–14367.CrossRefPubMedGoogle Scholar
  24. 24.
    Fata, J.E., Kong, Y.Y., Li, J. et al. (2000). The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell, 103: 41–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Feldmann, M., Brennan, F.M., & Maini, R.N. (1996). Rheumatoid arthritis. Cell, 85: 307–310.CrossRefPubMedGoogle Scholar
  26. 26.
    Feldmann, M., Brennan, F.M., & Maini, R.N. (1996). Role of cytokines in rheumatoid arthritis. Annu Rev Immunol, 14: 397–440.CrossRefPubMedGoogle Scholar
  27. 27.
    Futterer, A., Mink, K., Luz, A. et al. (1998). The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity, 9: 59–70.CrossRefPubMedGoogle Scholar
  28. 28.
    Fu, Y.X., Chaplin, D.D. (1999). Development and maturation of secondary lymphoid tissues. Annu Rev Immunol, 17: 399–433.CrossRefPubMedGoogle Scholar
  29. 29.
    Green, E.A., Choi, Y., & Flavell, R.A. (2002). Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity, 16: 183–191.CrossRefPubMedGoogle Scholar
  30. 30.
    Green, E.A., & Flavell, R.A. (2000). The temporal importance of TNFalpha expression in the development of diabetes. Immunity, 12: 459–469.CrossRefPubMedGoogle Scholar
  31. 31.
    Harrington, L.E., Hatton, R.D., Mangan, P.R. et al. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 6: 1123–1132.CrossRefPubMedGoogle Scholar
  32. 32.
    Hikosaka, Y., Nitta, T., Ohigashi, I. et al. (2008). The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity, 29: 438–450.CrossRefPubMedGoogle Scholar
  33. 33.
    Hofbauer, L.C., Khosla, S., Dunstan, C.R. et al. (1999). Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology, 140: 4367–4370.CrossRefPubMedGoogle Scholar
  34. 34.
    Horwood, N.J., Elliott, J., Martin, T.J. et al. (2001). IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol, 166: 4915–4921.PubMedGoogle Scholar
  35. 35.
    Hsu, H., Lacey, D.L., Dunstan, C.R. et al. (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A, 96: 3540–3545.CrossRefPubMedGoogle Scholar
  36. 36.
    Ingulli, E., Mondino, A., Khoruts, A. et al. (1997). In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J Exp Med, 185: 2133–2141CrossRefPubMedGoogle Scholar
  37. 37.
    Irla, M., Hugues, S., Gill, J. et al. (2008). Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity, 29: 451–463.CrossRefPubMedGoogle Scholar
  38. 38.
    Josien, R., Li, H.L., Ingulli, E. et al. (2000). TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med, 191: 495–502.CrossRefPubMedGoogle Scholar
  39. 39.
    Josien, R., Wong, B.R., Li, H.L. et al. (1999). TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol, 162: 2562–2568.PubMedGoogle Scholar
  40. 40.
    Kanematsu, M., Sato, T., Takai, H., et al. (2000). Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J Bone Miner Res, 15: 1321–1329.CrossRefPubMedGoogle Scholar
  41. 41.
    Keffer, J., Probert, L., Cazlaris, H. et al (1991). Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. Embo J, 10: 4025–4031,PubMedGoogle Scholar
  42. 42.
    Kim, D., Mebius, R.E., MacMicking, J.D. et al. (2000). Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med, 192: 1467–1478.CrossRefPubMedGoogle Scholar
  43. 43.
    Kong, Y.Y., Feige, U., Sarosi, I. et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 42: 304–309.Google Scholar
  44. 44.
    Kong, Y.Y., Yoshida, H., Sarosi, I. et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397: 315–323.CrossRefPubMedGoogle Scholar
  45. 45.
    Koni, P.A., Sacca, R., Lawton, P. et al. (1997). Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity, 6: 491–500.CrossRefPubMedGoogle Scholar
  46. 46.
    Korganow, A.S., Ji, H., Mangialaio, S. et al. (1999). From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity, 10: 451–461.CrossRefPubMedGoogle Scholar
  47. 47.
    Kotake, S., Udagawa, N., Hakoda, M. et al. (2001). Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum, 44: 1003–1012.CrossRefPubMedGoogle Scholar
  48. 48.
    Kotake, S., Udagawa, N., Takahashi, N. et al. (1999). IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest, 103: 1345–1352.CrossRefPubMedGoogle Scholar
  49. 49.
    Kouskoff, V., Korganow, A.S., Duchatelle, V., &et al. (1996). Organ-specific disease provoked by systemic autoimmunity. Cell, 87: 811–822.CrossRefPubMedGoogle Scholar
  50. 50.
    Kyewski, B., & Klein, L. (2006). A central role for central tolerance. Annu Rev Immunol, 24: 571–606.CrossRefPubMedGoogle Scholar
  51. 51.
    Lacey, D.L., Timms, E., Tan, H.L. et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93: 165–176.CrossRefPubMedGoogle Scholar
  52. 52.
    Li, J., Sarosi, I., Yan, X.Q. et al. (2000). RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A, 97: 1566–1571.CrossRefPubMedGoogle Scholar
  53. 53.
    Lipton, A. (2006). Future treatment of bone metastases. Clin Cancer Res, 12: 6305s–6308s.CrossRefPubMedGoogle Scholar
  54. 54.
    Lipton, A., Steger, G.G., Figueroa, J. et al. (2007). Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol, 25: 4431–4437.CrossRefPubMedGoogle Scholar
  55. 55.
    Loser, K., Mehling, A., Loeser, S. et al. (2006). Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med, 12: 1372–1379.CrossRefPubMedGoogle Scholar
  56. 56.
    Mahamed, D.A., Marleau, A., Alnaeeli, M. et al. (2005). G(-) anaerobes-reactive CD4+ T-cells trigger RANKL-mediated enhanced alveolar bone loss in diabetic NOD mice. Diabetes, 54: 1477–1486.CrossRefPubMedGoogle Scholar
  57. 57.
    Manoury-Schwartz, B., Chiocchia, G., Bessis, N. et al. (1997). High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol, 158: 5501–5506.PubMedGoogle Scholar
  58. 58.
    Matsumoto, M., Mariathasan, S., Nahm, M.H. et al. (1996). Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science, 271: 1289–1291.CrossRefPubMedGoogle Scholar
  59. 59.
    Mebius, R.E. (2003). Organogenesis of lymphoid tissues. Nat Rev Immunol, 3: 292–303.CrossRefPubMedGoogle Scholar
  60. 60.
    Mebius, R.E., Rennert, P., & Weissman, I.L. (1997). Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity, 7: 493–504.CrossRefPubMedGoogle Scholar
  61. 61.
    Mehling, A., Loser, K., Varga, G. et al. (2001). Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity. J Exp Med, 194: 615–628.CrossRefPubMedGoogle Scholar
  62. 62.
    McClung, M.R., Lewiecki, E.M., Cohen, S.B. et al. (2006). Denosumab in postmenopausal women with low bone mineral density. N Engl J Med, 354: 821–831.CrossRefPubMedGoogle Scholar
  63. 63.
    Mori, H., Kitazawa, R., Mizuki, S. et al. (2002). RANK ligand, RANK, and OPG expression in type II collagen-induced arthritis mouse. Histochem Cell Biol, 117: 283–292.CrossRefPubMedGoogle Scholar
  64. 64.
    Muller-Ladner, U., Gay, R.E., & Gay, S. (1998). Molecular biology of cartilage and bone destruction. Curr Opin Rheumatol, 10: 212–219.CrossRefPubMedGoogle Scholar
  65. 65.
    Nakashima, T., Wada, T., & Penninger, J.M. (2003). RANKL and RANK as novel therapeutic targets for arthritis. Curr Opin Rheumatol, 15: 280–287.CrossRefPubMedGoogle Scholar
  66. 66.
    Oliveri, M.B., Mautalen, C.A., Rodriguez Fuchs, C.A. et al. (1991). Vertebral compression fractures at the onset of acute lymphoblastic leukemia in a child. Henry Ford Hosp Med J, 39: 45–48.PubMedGoogle Scholar
  67. 67.
    Oxenius, A., Campbell, K.A., Maliszewski, C.R. et al. (1996). CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J Exp Med, 183: 2209–2218.CrossRefPubMedGoogle Scholar
  68. 68.
    Oliveri, MB., Mautalen, C.A., Rodriguez Fuchs, C.A. et al. (1991). Vertebral compression fractures at the onset of acute lymphoblastic leukemia in a child. Henry Ford Hosp Med J, 39: 45–48.PubMedGoogle Scholar
  69. 69.
    Oxenius, A., Campbell, K.A., Maliszewski, C.R. et al. (1996). CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J Exp Med, 183: 2209–2218.CrossRefPubMedGoogle Scholar
  70. 70.
    Panayi, G.S., Lanchbury, J.S., & Kingsley, G.H. (1992). The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum, 35: 729–735.CrossRefPubMedGoogle Scholar
  71. 71.
    Park, H., Li, Z., Yang, X.O. et al. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 6: 1133–1141.CrossRefPubMedGoogle Scholar
  72. 72.
    Pettit, A.R., Ji, H., von Stechow, D. et al. (2001). TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol, 159: 1689–1699.PubMedGoogle Scholar
  73. 73.
    Piepkorn, B., Kann, P., Forst, T. et al. (1997). Bone mineral density and bone metabolism in diabetes mellitus. Horm Metab Res, 29: 584–591.CrossRefPubMedGoogle Scholar
  74. 74.
    Quezada, S.A., Jarvinen, L.Z., Lind, E.F. et al. (2004). CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol, 22: 307–328.CrossRefPubMedGoogle Scholar
  75. 75.
    Redlich, K., Hayer, S., Maier, A. et al. (2002). Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum, 46: 785–792.CrossRefPubMedGoogle Scholar
  76. 76.
    Rennert, P.D., Browning, J.L., & Hochman, P.S. (1997). Selective disruption of lymphotoxin ligands reveals a novel set of mucosal lymph nodes and unique effects on lymph node cellular organization. Int Immunol, 9: 1627–1639.CrossRefPubMedGoogle Scholar
  77. 77.
    Rennert, P.D., James, D., Mackay, F. et al. (1998). Lymph node genesis is induced by signaling through the lymphotoxin beta receptor. Immunity, 9: 71–79.CrossRefPubMedGoogle Scholar
  78. 78.
    Romas, E., Sims, N.A., Hards, D.K. et al. (2002). Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am J Pathol, 161: 1419–1427.PubMedGoogle Scholar
  79. 79.
    Rossi, S.W., Jenkinson, W.E., Anderson, G. et al. (2006). Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature, 441: 988–991.CrossRefPubMedGoogle Scholar
  80. 80.
    Rossi, S.W., Kim, M.Y., Leibbrandt, A. et al. (2007). RANK signals from CD4(+)3(-) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med, 204: 1267–1272.CrossRefPubMedGoogle Scholar
  81. 81.
    Roy, M., Waldschmidt, T., Aruffo, A. et al. (1993). The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J Immunol, 151: 2497–2510.PubMedGoogle Scholar
  82. 82.
    Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol, 6: 345–352.CrossRefPubMedGoogle Scholar
  83. 83.
    Sato, K., Suematsu, A., Okamoto, K. et al. (2006). Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med, 203: 2673–2682.CrossRefPubMedGoogle Scholar
  84. 84.
    Seitz, M., & Hunstein, W. (1985). Enhanced prostanoid release from monocytes of patients with rheumatoid arthritis and active systemic lupus erythematosus. Ann Rheum Dis, 44: 438–445.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.IMBAInstitute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria

Personalised recommendations