Skip to main content

NFATc1 in Inflammatory and Musculoskeletal Conditions

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 658))

Abstract

The nuclear factor of activated T-cells (NFAT) family of transcription factors specify developmental pathways and cell fate in vertebrates. NFATc1, in particular, is crucial to multiple seemingly unrelated biologic processes, including heart valve formation, T-cell activation, osteoclast development, and the mitigation of hair follicle stem cell proliferation. Here, we review how our recently generated NFATc1 conditional knockout mouse has contributed to our understanding of this transcription factor in inflammatory and musculoskeletal conditions and their treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aliprantis, A.O., Ueki, Y., Sulyanto, R. et al. (2008). NFATc1 represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest, 118(11):377–389.

    Article  Google Scholar 

  2. Arron, J.R., Winslow, M.M., Polleri, A. et al. (2006). NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature, 441:595–600.

    Article  CAS  PubMed  Google Scholar 

  3. Asagiri, M., & Takayanagi, H. (2007). The molecular understanding of osteoclast differentiation. Bone, 40:251–264.

    Article  CAS  PubMed  Google Scholar 

  4. Asagiri, M., Sato, K., Usami, T. et al. (2005). Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med, 202:1261–1269.

    Article  CAS  PubMed  Google Scholar 

  5. Atkins, G.J., Bouralexis, S., Haynes, D.R. et al. (2001). Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone, 28:370–377.

    Article  CAS  PubMed  Google Scholar 

  6. Boyle, W.J., Simonet, W.S., & Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature, 423:337–342.

    Article  CAS  PubMed  Google Scholar 

  7. Carlsten, H. (2005). Immune responses and bone loss: the estrogen connection. Immunol Rev, 208:194–206.

    Article  CAS  PubMed  Google Scholar 

  8. Chang, C.P., Neilson, J.R., Bayle, J.H. et al. (2004). A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell, 118:649–663.

    Article  CAS  PubMed  Google Scholar 

  9. Crotti, T.N., Flannery, M., Walsh, N.C. et al. (2006). NFATc1 regulation of the human beta3 integrin promoter in osteoclast differentiation. Gene, 372:92–102.

    Article  CAS  PubMed  Google Scholar 

  10. Fuller, K., Wong, B., Fox, S. et al. (1998). TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J.Exp.Med, 188:997–1001.

    Article  CAS  PubMed  Google Scholar 

  11. Graef, I.A., Chen, F., & Crabtree, G.R. (2001). NFAT signaling in vertebrate development. Curr Opin Genet Dev, 11:505–512.

    Article  CAS  PubMed  Google Scholar 

  12. Graef, I.A., Wang, F., Charron, F. et al. (2003). Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell, 113:657–670.

    Article  CAS  PubMed  Google Scholar 

  13. Gwack, Y., Sharma, S., Nardone, J. et al. (2006). A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature, 441:582–583.

    Article  Google Scholar 

  14. Hirotani, H., Tuohy, N.A., Woo, J.T. et al. (2004). The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem, 279:13984–13992.

    Article  CAS  PubMed  Google Scholar 

  15. Hodge, M.R., Ranger, A.M., Charles de la Brousse, F. et al. (1996). Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity, 4:397–405.

    Article  CAS  PubMed  Google Scholar 

  16. Hogan, P.G., Chen, L., Nardone, J. et al. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev, 17:2205–2232.

    Article  CAS  PubMed  Google Scholar 

  17. Horsley, V., Aliprantis, A.O., Polak, L. et al. (2008). NFATc1 balances quiescence and proliferation of skin stem cells. Cell, 132:299–310.

    Article  CAS  PubMed  Google Scholar 

  18. Jimi, E., & Ghosh, S. (2005). Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev, 208:80–87.

    Article  CAS  PubMed  Google Scholar 

  19. Kaminuma, O., Kitamura, F., Kitamura, N. et al. (2008). Differential contribution of NFATc2 and NFATc1 to TNF-alpha gene expression in T cells. J Immunol, 180:319–326.

    CAS  PubMed  Google Scholar 

  20. Karsenty, G., & Wagner, E.F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev Cell, 2:389–406.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, K., Kim, J.H., Lee, J. et al. (2005a). Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem, 280:35209–35216.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, Y., Sato, K., Asagiri, M. et al. (2005b). Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem, 280:32905–32913.

    Article  CAS  PubMed  Google Scholar 

  23. Koga, T., Inui, M., Inoue, K. et al. (2004). Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature, 428:758–763.

    Article  CAS  PubMed  Google Scholar 

  24. Kong, Y.Y., Yoshida, H., Sarosi, I. et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397:315–323.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, B., Yu, S.F., & Li, T.J. (2003). Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts. J Oral Pathol Med, 32:367–375.

    Article  PubMed  Google Scholar 

  26. Lorenzo, J., & Choi, Y. (2005). Osteoimmunology. Immunol Rev, 208:5–6.

    Article  PubMed  Google Scholar 

  27. Luisde la Pompa, J., Timmerman, L.A., Takimoto, H. et al. (1998). Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature, 392:182–186.

    Article  Google Scholar 

  28. Peng, S.L., Gerth, A.J., Ranger, A.M. et al. (2001). NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity, 14:13–20.

    Article  CAS  PubMed  Google Scholar 

  29. Phillips, K., Aliprantis, A., & Coblyn, J. (2006). Strategies for the prevention and treatment of osteoporosis in patients with rheumatoid arthritis. Drugs Aging, 23:773–779.

    Article  CAS  PubMed  Google Scholar 

  30. Ranger, A.M., Grusby, M.J., Hodge, M.R. et al. (1998a). The transcription factor NF-ATc is essential for cardiac valve formation. Nature, 392:186–190.

    Article  CAS  PubMed  Google Scholar 

  31. Ranger, A.M., Hodge, M.R., Gravallese, E.M. et al. (1998b). Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NFATc. Immunity, 8:125–134.

    Article  CAS  PubMed  Google Scholar 

  32. Ranger, A.M., Gerstenfeld, L.C., Wang, J. et al. (2000). The transcription factor NFATp is a repressor of chondrogenesis. J Exp Med, 191:9–21.

    Article  CAS  PubMed  Google Scholar 

  33. Rho, J., Takami, M., & Choi, Y. (2004). Osteoimmunology: interactions of the immune and skeletal systems. Mol Cells, 17:1–9.

    CAS  PubMed  Google Scholar 

  34. Sharma, S.M., Bronisz, A., Hu, R. et al. (2007). MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J Biol Chem, 282:15921–15929.

    Article  CAS  PubMed  Google Scholar 

  35. Shaw, J., Utz, P., Durand, D. et al. (1988). Identification of a putative regulator of early T cell activation genes. Science, 241:202–205.

    Article  CAS  PubMed  Google Scholar 

  36. Simonet, W.S., Lacey, D.L., Dunstan, C.R. et al. (1997). Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 89:309–319.

    Article  CAS  PubMed  Google Scholar 

  37. Takayanagi, H., Sato, K., Takaoka, A. et al. (2005). Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev, 208:181–193.

    Article  CAS  PubMed  Google Scholar 

  38. Takayanagi, H., Kim, S., Koga, T. et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell, 3:889–901.

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka, S., Nakamura, K., Takahasi, N. et al. (2005). Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev, 208:30–49.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka, S., Takahashi, N., Udagawa, N. et al. (1993). Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest, 91:257–263.

    Article  CAS  PubMed  Google Scholar 

  41. Tolar, J., Teitelbaum, S.L., & Orchard, P.J. (2004). Osteopetrosis. N Engl J Med, 351:2839–2849.

    Article  PubMed  Google Scholar 

  42. Tsytsykova, A.V., & Goldfeld, A.E. (2000). Nuclear Factor of Activated T Cells Transcription Factor NFATp Controls Superantigen-induced Lethal Shock. J Exp Med, 192:581–586.

    Article  CAS  PubMed  Google Scholar 

  43. Ueki, Y., Tiziani, V., Santanna, C. et al. (2001). Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet, 28:125–126.

    Article  CAS  PubMed  Google Scholar 

  44. Ueki, Y., Lin, C.Y., Senoo, M. et al. (2007). Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice. Cell, 128:71–83.

    Article  CAS  PubMed  Google Scholar 

  45. Wada, T., Nakashima, T., Hiroshi, N. et al. (2006). RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med, 12:17–25.

    Article  CAS  PubMed  Google Scholar 

  46. Wagner, E.F., & Eferl, R. (2005). Fos/AP-1 proteins in bone and the immune system. Immunol Rev, 208:126–140.

    Article  CAS  PubMed  Google Scholar 

  47. Wein, M.N., Jones, D.C., & Glimcher, L.H. (2005). Turning down the system: counter-regulatory mechanisms in bone and adaptive immunity. Immunol Rev, 208:66–79.

    Article  CAS  PubMed  Google Scholar 

  48. Winslow, M.M., Pan, M., Starbuck, M. et al. (2006). Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell, 10:771–782.

    Article  CAS  PubMed  Google Scholar 

  49. Wu, H., Peisley, A., Graef, I.A. et al. (2007). NFAT signaling and the invention of vertebrates. Trends Cell Biol, 17:251–260.

    Article  CAS  PubMed  Google Scholar 

  50. Xing, L., Schwarz, E.M., & Boyce, B.F. (2005). Osteoclast precursors, RANKL/RANK, and immunology. Immunol Rev, 208:19–29.

    Article  CAS  PubMed  Google Scholar 

  51. Yamamoto, S., & Kato, R. (1994). Hair growth-stimulating effects of cyclosporin A and FK506, potent immunosuppressants. J Dermatol Sci, 7(Suppl):S47–S54.

    Article  CAS  PubMed  Google Scholar 

  52. Yasuda, H., Shima, N., Nakagawa, N. et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA, 95:3597–3602.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios O. Aliprantis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Aliprantis, A.O., Glimcher, L.H. (2009). NFATc1 in Inflammatory and Musculoskeletal Conditions. In: Choi, Y. (eds) Osteoimmunology. Advances in Experimental Medicine and Biology, vol 658. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1050-9_8

Download citation

Publish with us

Policies and ethics