Communication Between EphrinB2 and EphB4 Within the Osteoblast Lineage

  • T.J. MartinEmail author
  • E.H. Allan
  • P.W.M. Ho
  • J.H. Gooi
  • J.M.W. Quinn
  • M.T. Gillespie
  • V. Krasnoperov
  • N.A. Sims
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 658)


Members of the ephrin and Eph family are local mediators of cell function through largely contact-dependent processes in development and in maturity. Production of ephrinB2 mRNA and protein are increased by PTH and PTHrP in osteoblasts. Both a synthetic peptide antagonist of ephrinB2/EphB4 receptor interaction and recombinant soluble extracellular domain of EphB4 (sEphB4), which is an antagonist of both forward and reverse EphB4 signaling, were able to inhibit mineralization and the expression of several osteoblast genes involved late in osteoblast differentiation. The findings are consistent with ephrinB2/EphB4 signaling within the osteoblast lineage having a paracrine role in osteoblast differentiation, in addition to the proposed role of osteoclast-derived ephrinB2 in coupling of bone formation to resorption. This local regulation might contribute to control of osteoblast differentiation and bone formation at remodeling sites, and perhaps also in modeling.


Osteoblast Ephrins PTHrP Bone remodeling 


  1. 1.
    Allan, E.H., Hausler, K.D., Wei, T., Gooi, J.H., Quinn, J.M., Crimeen-Irwin, B., Pompolo, S., Sims, N.A., Gillespie, M.T, Onyia, J.E., & Martin, T.J. (2008). EphrinB2 Regulation by Parathyroid Hormone (PTH) and PTHrP Revealed by Molecular Profiling in Differentiating Osteoblasts. J Bone Miner Res, 23(8), 1170–1181.CrossRefPubMedGoogle Scholar
  2. 2.
    Bonewald, L.F. (2007). Osteocyte messages from a bony tomb. Cell Metab, 5(6), 410–411.CrossRefPubMedGoogle Scholar
  3. 3.
    Centrella, M., McCarthy, T.L., & Canalis, E. (1991). Transforming growth factor-beta and remodeling of bone. J Bone Joint Surg Am, 73(9), 1418–1428.PubMedGoogle Scholar
  4. 4.
    Civitelli, R. (2008). Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys, 473(2), 188–192.CrossRefPubMedGoogle Scholar
  5. 5.
    Compagni, A., Logan, M., Klein, R., & Adams, R.H. (2003). Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell, 5(2), 217–230.CrossRefPubMedGoogle Scholar
  6. 6.
    Everts, V., Delaisse, J.M., Korper, W., Jansen, D.C., Tigchelaar-Gutter, W., Saftig, P., & Beertsen, W. (2002). The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res, 17(1), 77–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Gray, C., Boyde, A., & Jones, S.J. (1996). Topographically induced bone formation in vitro: implications for bone implants and bone grafts. Bone, 18(2), 115–123.CrossRefPubMedGoogle Scholar
  8. 8.
    Hamada, K., Oike, Y., Ito, Y., Maekawa, H., Miyata, K., Shimomura, T., & Suda, T. (2003). Distinct roles of ephrin-B2 forward and EphB4 reverse signaling in endothelial cells. Arterioscler Thromb Vasc Biol, 23(2), 190–197.CrossRefPubMedGoogle Scholar
  9. 9.
    Himanen, J.P., Chumley, M.J., Lackmann, M., Li, C., Barton, W.A., Jeffrey, P.D., Vearing, C., Geleick, D., Feldheim, D.A., Boyd, A.W., Henkemeyer, M., & Nikolov, D.B. (2004). Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci, 7(5):501–509.CrossRefPubMedGoogle Scholar
  10. 10.
    Himanen, J.P., & Nikolov, D.B. (2003). Eph receptors and ephrins. Int J Biochem Cell Biol, 35(2), 130–134.CrossRefPubMedGoogle Scholar
  11. 11.
    Holmberg, J., Armulik, A., Senti, K.A., Edoff, K., Spalding, K., Momma, S., Cassidy, R., Flanagan, J.G., & Frisen, J. (2005). Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev, 19(4), 462–471.CrossRefPubMedGoogle Scholar
  12. 12.
    Kertesz, N., Krasnoperov, V., Reddy, R., Leshanski, L., Kumar, S.R., Zozulya, S., & Gill, P.S. (2006). The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood, 107(6), 2330–2338.CrossRefPubMedGoogle Scholar
  13. 13.
    Koolpe, M., Burgess, R., Dail, M., & Pasquale, E.B. (2005). EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J Biol Chem, 280(17), 17301–17311.CrossRefPubMedGoogle Scholar
  14. 14.
    Lips, P., Courpron, P., & Meunier, P.J. (1978). Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res, 26(1), 13–17.CrossRefPubMedGoogle Scholar
  15. 15.
    Lu Q, Sun E.E., Klein R.S., Flanagan J.G. (2001). Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell, 105(1), 69–79.CrossRefPubMedGoogle Scholar
  16. 16.
    Miao, D., He, B., Jiang, Y., Kobayashi, T., Soroceanu, M.A., Zhao, J., Su, H., Tong, X., Amizuka, N., Gupta, A., Genant, H.K., Kronenberg, H.M., Goltzman, D., & Karaplis, A.C. (2005). Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest, 115(9), 2402–2411.CrossRefPubMedGoogle Scholar
  17. 17.
    Mohan, S., & Baylink, D.J. (1991). Bone growth factors. Clin Orthop Relat Res, 263, 30–48.PubMedGoogle Scholar
  18. 18.
    Murai, K.K., & Pasquale, E.B. (2003). 'Eph’ective signaling: forward, reverse and crosstalk. J Cell Sci, 116(Pt 14), 2823–2832.CrossRefPubMedGoogle Scholar
  19. 19.
    Nakamura, M., Udagawa, N., Matsuura, S., Mogi, M., Nakamura, H., Horiuchi, H., Saito, N., Hiraoka, B.Y., Kobayashi, Y., Takaoka, K., Ozawa, H., Miyazawa, H., & Takahashi, N. (2003). Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology, 144(12), 5441–5449.CrossRefPubMedGoogle Scholar
  20. 20.
    Noble, B.S., Peet, N., Stevens, H.Y., Brabbs, A., Mosley, J.R., Reilly, G.C., Reeve, J., Skerry, T.M., & Lanyon, L.E. (2003). Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol, 284(4), C934–C943.PubMedGoogle Scholar
  21. 21.
    Oreffo, R.O., Mundy, G.R., Seyedin, S.M., & Bonewald, L.F. (1989). Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun, 158(3), 817–823.CrossRefPubMedGoogle Scholar
  22. 22.
    Parfitt, A.M. (1996). Skeletal heterogeneity and the purposes of bone remodeling: implications for the understanding of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds.) Osteoporosis. Academic Press, San Diego, CA, pp. 315–339.Google Scholar
  23. 23.
    Parfitt, A.M. (2002). Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone, 30(1), 5–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Pasquale, E.B. (2005). Eph receptor signaling [stet] casts a wide net on cell behaviour. Nat Rev Mol Cell Biol, 66, 462–475.CrossRefGoogle Scholar
  25. 25.
    Robling, A.G., Bellido, T., & Turner, C.H. (2006). Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact, 6(4), 354.PubMedGoogle Scholar
  26. 26.
    Sims, N.A., Jenkins, B.J., Quinn, J.M., Nakamura, A., Glatt, M., Gillespie, M.T., Ernst, M., & Martin, T.J. (2004). Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest, 113(3), 379–389.PubMedGoogle Scholar
  27. 27.
    Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., & Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev, 20(3), 345–357.CrossRefPubMedGoogle Scholar
  28. 28.
    van Bezooijen, R.L., ten Dijke, P., Papapoulos, S.E., & Lowik, C.W. (2005). SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev, 16(3), 319–327.CrossRefPubMedGoogle Scholar
  29. 29.
    Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407(6801), 242–248.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao, C., Irie, N., Takada, Y., Shimoda, K., Miyamoto, T., Nishiwaki, T., Suda, T., & Matsuo, K. (2006). Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab, 4(2), 111–121.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T.J. Martin
    • 1
    Email author
  • E.H. Allan
    • 2
  • P.W.M. Ho
    • 2
  • J.H. Gooi
    • 2
  • J.M.W. Quinn
    • 3
  • M.T. Gillespie
    • 3
  • V. Krasnoperov
    • 4
  • N.A. Sims
    • 2
  1. 1.Department of MedicineSt Vincent’s Institute and University of MelbourneMelbourneAustralia
  2. 2.Department of MedicineSt Vincent’s Institute and University of MelbourneMelbourneAustralia
  3. 3.Department of MedicineSt Vincent’s Institute and University of Melbourne, Prince Henrys InstituteMelbourneAustralia
  4. 4.Vasgene TherapeuticsLos AngelesUSA

Personalised recommendations