Advertisement

Regulation of Osteoblast Differentiation by Runx2

  • Toshihisa KomoriEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 658)

Abstract

Runx2 protein is first detected in preosteoblasts, and the expression is upregulated in immature osteoblasts, but downregulated in mature osteoblasts. Runx2 is the first transcription factor required for determination of the osteoblast lineage, while Sp7 and canonical Wnt-signaling further direct the fate of mesenchymal cells to osteoblasts, blocking their differentiation into chondrocytes. Runx2 induces the differentiation of multipotent mesenchymal cells into immature osteoblasts, directing the formation of immature bone, but Runx2 inhibits osteoblast maturation and mature bone formation. Normally, the protein level of Runx2 in osteoblasts reduces during bone development, and osteoblasts acquire mature phenotypes, which are required for mature bone formation. Furthermore, Runx2 triggers the expression of major bone matrix genes during the early stages of osteoblast differentiation, but Runx2 is not essential for the maintenance of these gene expressions in mature osteoblasts.

Keywords

Runx2 Sp7 Canonical Wnt Signaling Osteoblast Osteopontin Osteocalcin 

References

  1. 1.
    Day, T.F., Guo, X., Garrett-Beal, L., & Yang, Y. (2005). Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell, 8, 739–750CrossRefPubMedGoogle Scholar
  2. 2.
    Ducy, P., Starbuck, M., Priemel, M., Shen, J., Pinero, G., Geoffroy, V., Amling, M., & Karsenty, G. (1999). A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev, 13, 1025–1036CrossRefPubMedGoogle Scholar
  3. 3.
    Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., & Karsenty, G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 89, 747–754CrossRefPubMedGoogle Scholar
  4. 4.
    Harada, H., Tagashira, S., Fujiwara, M., Ogawa, S., Katsumata, T., Yamaguchi, A., Komori, T., & Nakatsuka, M. (1999). Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem, 274, 6972–6978CrossRefPubMedGoogle Scholar
  5. 5.
    Hill, T.P., Später, D., Taketo, M.M., Birchmeier, W., & Hartmann, C. (2005). Canonical Wnt/?-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell, 8, 727–738CrossRefPubMedGoogle Scholar
  6. 6.
    Hu, H., Hilton, M.J., Tu, X., Yu, K., Ornitz, D.M., & Long, F. (2005). Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development, 132, 49–60CrossRefPubMedGoogle Scholar
  7. 7.
    Jiménez, M.J., Balbín, M., López, J.M., Alvarez, J., Komori, T., & López-Otín, C. (1999). Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol, 19, 4431–4442PubMedGoogle Scholar
  8. 8.
    Kanatani, N., Fujita, T., Fukuyama, R., Liu, W., Yoshida, C.A., Moriishi, T., Yamana, K., Miyazaki, T., Toyosawa, S., & Komori, T. (2006). Cbfb regulates Runx2 function isoform-dependently in postnatal bone development. Dev Biol, 296, 48–61CrossRefPubMedGoogle Scholar
  9. 9.
    Kern, B., Shen, J., Starbuck, M., & Karsenty, G. (2001). Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J Biol Chem, 276, 7101–7107CrossRefPubMedGoogle Scholar
  10. 10.
    Komori, T. (2008). Regulation of bone development and maintenance by Runx2. Front Biosci, 13, 898–903CrossRefPubMedGoogle Scholar
  11. 11.
    Komori, T. (2006). Regulation of osteoblast differentiation by transcription factors. J Cell Biochem, 99, 1233–1239CrossRefPubMedGoogle Scholar
  12. 12.
    Komori, T. (2005). Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem, 95, 445–453CrossRefPubMedGoogle Scholar
  13. 13.
    Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y, Bronson, R.T., Gao, Y.H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y., Yoshiki, S., & Kishimoto, T. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89, 755–764CrossRefPubMedGoogle Scholar
  14. 14.
    Lee, K.S., Kim, H.J., Li, Q.L., Chi, X.Z., Ueta, C., Komori, T., Wozney, J.M., Kim, E.G., Choi, J.Y., Ryoo, H.M., & Bae, S.C. (2000). Runx2 is a common target of transforming growth factor b1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol, 20, 8783–8792CrossRefPubMedGoogle Scholar
  15. 15.
    Liu, W., Toyosawa, S., Furuichi, T., Kanatani, N., Yoshida, C., Liu, Y., Himeno, M., Narai, S., Yamaguchi, A., & Komori, T. (2001). Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol, 155, 157–166CrossRefPubMedGoogle Scholar
  16. 16.
    Maruyama, Z., Yoshida, C.A., Furuichi, T., Amizuka, N., Ito, M., Fukuyama, R., Miyazaki, T., Kitaura, H., Nakamura, K., Fujita, T., Kanatani, N., Moriishi, T., Yamana, K., Liu, W., Kawaguchi, H., Nakamura, K., & Komori, T. (2007). Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Dev Dyn, 236, 1876–1890CrossRefPubMedGoogle Scholar
  17. 17.
    Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., & de Crombrugghe, B. (2002). The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell, 108, 17–29CrossRefPubMedGoogle Scholar
  18. 18.
    Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., Selby, P.B., & Owen, M.J. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89, 765–771CrossRefPubMedGoogle Scholar
  19. 19.
    Rodda, S.J., & McMahon, A.P. (2006). Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development, 133, 3231–3244CrossRefPubMedGoogle Scholar
  20. 20.
    Thirunavukkarasu, K., Halladay, D.L., Miles, R.R., Yang, X., Galvin, R.J., Chandrasekhar, S., Martin, T.J., & Onyia, J.E. (2000). The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem, 275, 25163–25172CrossRefPubMedGoogle Scholar
  21. 21.
    Yoshida, C.A., Furuichi, T., Fujita, T., Fukuyama, R., Kanatani, N., Kobayashi, S., Satake, M., Takada, K., & Komori, T. (2002). Core-binding factor b interacts with Runx2 and is required for skeletal development. Nat Genet, 32, 633–638CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Unit of BasicMedical Sciences, Department of Cell BiologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan

Personalised recommendations