Activation of γδ T Cells by Bisphosphonates

  • Keith ThompsonEmail author
  • Anke J. Roelofs
  • Marjo Jauhiainen
  • Hannu Mönkkönen
  • Jukka Mönkkönen
  • Michael J. Rogers
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 658)


After decades of successful clinical use, the exact molecular mechanisms by which the anti-resorptive bisphosphonate drugs (BPs) exert their effects are now being revealed. In addition to their anti-resorptive effects, it is now apparent that nitrogen-containing BPs (N-BPs) have immunomodulatory properties. Specifically, these drugs activate immune cells called gamma, delta T lymphocytes. In this chapter we discuss the mechanism of gamma, delta T cell activation by N-BPs and propose that N-BPs may provide a safe and effective means for manipulating gamma,delta T cell activity in future immunotherapeutic approaches.


Bisphosphonate Gamma, delta T cell Monocytes Osteoporosis Mevalonate pathway 


  1. 1.
    Adami, S., Bhalla, A.K., Dorizzi, R. et al. (1987). The acute-phase response after bisphosphonate administration. Calcif Tiss Int, 41, 326–331.CrossRefGoogle Scholar
  2. 2.
    Bergstrom, J.D., Bostedor, R.G., Masarachia, P.J., Reszka, A.A., & Rodan, G. (2000). Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys, 373, 231–241.CrossRefPubMedGoogle Scholar
  3. 3.
    Black, D.M., Delmas, P.D., Eastell, R. et al. (2007). Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med, 356, 1809–1822.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen, T., Berenson, J., Vescio, R. et al. (2002). Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol, 42, 1228–1236.CrossRefPubMedGoogle Scholar
  5. 5.
    Coxon, F.P., & Rogers, M.J. (2003). The Role of Prenylated Small GTP-Binding Proteins in the Regulation of Osteoclast Function. Calcif Tissue Int, 72, 80–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Coxon, F.P., Thompson, K., Roelofs, A.J., Ebetino, F.H., & Rogers, M.J. (2008). Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone, 42, 848–860.CrossRefPubMedGoogle Scholar
  7. 7.
    Das, H., Wang, L., Kamath, A., & Bukowski, J.F. (2001). Vgamma2Vdelta2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood, 98, 1616–1618.CrossRefPubMedGoogle Scholar
  8. 8.
    Delmas, P.D., Adami, S., Strugala, C. et al. (2006). Intravenous ibandronate injections in postmenopausal women with osteoporosis: one-year results from the dosing intravenous administration study. Arthritis Rheum, 54, 1838–1846.CrossRefPubMedGoogle Scholar
  9. 9.
    Dunford, J.E., Thompson, K., Coxon, F.P. et al. (2001). Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther, 296, 235–242.PubMedGoogle Scholar
  10. 10.
    Espinosa, E., Belmant, C., Pont, F. et al. (2001). Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human gamma delta T cells. J Biol Chem, 276, 18337–18344.CrossRefPubMedGoogle Scholar
  11. 11.
    Frith, J.C., Monkkonen, J., Auriola, S., Monkkonen, H., & Rogers, M.J. (2001). The molecular mechanism of action of the anti-resorptive and anti-inflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arth Rheum, 44, 2201–2210.CrossRefGoogle Scholar
  12. 12.
    Gober, H.J., Kistowska, M., Angman, L. et al. (2003). Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med, 197, 163–168.CrossRefPubMedGoogle Scholar
  13. 13.
    Hayday, A.C. (2000). [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Ann Rev Immunol, 18, 975–1026.CrossRefGoogle Scholar
  14. 14.
    Hewitt, R.E., Lissina, A., Green, A.E. et al. (2005). The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol, 139, 101–111.CrossRefPubMedGoogle Scholar
  15. 15.
    Kunzmann, V., Bauer, E., Feurle, J. et al. (2000). Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood, 96, 384–392.PubMedGoogle Scholar
  16. 16.
    Kunzmann, V., Bauer, E., & Wilhelm, M. (1999). Gamma/delta T-cell stimulation by pamidronate. N Engl J Med, 340, 737–738.CrossRefPubMedGoogle Scholar
  17. 17.
    Kunzmann, V., & Wilhelm, M. (2005). Anti-lymphoma effect of gammadelta T cells. Leuk Lymphoma, 46, 671–680.CrossRefPubMedGoogle Scholar
  18. 18.
    Li, L., & Wu, C.Y. (2008). CD4+ CD25+ Treg cells inhibit human memory gammadelta T cells to produce IFN-gamma in response to M tuberculosis antigen ESAT-6. Blood, 111, 5629–5636.CrossRefPubMedGoogle Scholar
  19. 19.
    Mariani, S., Muraro, M., Pantaleoni, F. et al. (2005). Effector gammadelta T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia, 19, 664–670.PubMedGoogle Scholar
  20. 20.
    Miyagawa, F., Tanaka, Y., Yamashita, S., & Minato, N. (2001). Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human gamma delta T cells by aminobisphosphonate antigen. J Immunol, 166, 5508–5514.PubMedGoogle Scholar
  21. 21.
    Monkkonen, H., Auriola, S., Lehenkari, P. et al. (2006). A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol, 147, 437–445.CrossRefPubMedGoogle Scholar
  22. 22.
    Roelofs, A.J., Jauhiainen, M., Monkkonen, H. et al. (2009). Peripheral blood monocytes are responsible for gamma,delta T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. Br J Haematol, 144, 245–250.Google Scholar
  23. 23.
    Sato, M., Grasser, W., Endo, N. et al. (1991). Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest, 88, 2095–2105.CrossRefPubMedGoogle Scholar
  24. 24.
    Sauty, A., Pecherstorfer, M., Zimmer-Roth, I. et al. (1996). Interleukin-6 and tumor necrosis factor alpha levels after bisphosphonates treatment in vitro and in patients with malignancy. Bone, 18, 133–139.CrossRefPubMedGoogle Scholar
  25. 25.
    Schweitzer, D.H., Oostendorp-van de Ruit, M., Van der Pluijm, G., Lowik, C.W., & Papapoulos, S.E. (1995). Interleukin-6 and the acute phase response during treatment of patients with Paget’s disease with the nitrogen-containing bisphosphonate dimethylaminohydroxypropylidene bisphosphonate. J Bone Miner Res, 10, 956–962.CrossRefPubMedGoogle Scholar
  26. 26.
    Selander, K., Lehenkari, P., & Vaananen, H.K. (1994). The effects of bisphosphonates on the resorption cycle of isolated osteoclasts. Calcif Tiss Int, 55, 368–375.CrossRefGoogle Scholar
  27. 27.
    Sicard, H., Ingoure, S., Luciani, B. et al. (2005). In vivo immunomanipulation of V gamma 9 V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol, 175, 5471–5480.PubMedGoogle Scholar
  28. 28.
    Tanaka, Y., Morita, C.T., Tanaka, Y. et al. (1995). Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature, 375, 155–158.CrossRefPubMedGoogle Scholar
  29. 29.
    Thiebaud, D., Sauty, A., Burckhardt, P. et al. (1997). An in vitro and in vivo study of cytokines in the acute-phase response associated with bisphosphonates. Calcif Tissue Int, 61, 386–392.CrossRefPubMedGoogle Scholar
  30. 30.
    Thompson, K., Rogers, M.J., Coxon, F.P., & Crockett, J.C. (2006). Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol Pharmacol, 69, 1624–1632.CrossRefPubMedGoogle Scholar
  31. 31.
    Thompson, K., & Rogers, M.J. (2004). Statins prevent bisphosphonate-induced gamma,delta-T-cell proliferation and activation in vitro. J Bone Miner Res, 19, 278–288.CrossRefPubMedGoogle Scholar
  32. 32.
    van Beek, E., Pieterman, E., Cohen, L., Lowik, C., & Papapoulos, S. (1999). Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem Biophys Res Commun, 255, 491–494.CrossRefPubMedGoogle Scholar
  33. 33.
    van Beek, E., Pieterman, E., Cohen, L., Lowik, C., & Papapoulos, S. (1999). Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun, 264, 108–111.CrossRefPubMedGoogle Scholar
  34. 34.
    Wilhelm, M., Kunzmann, V., Eckstein, S. et al. (2003). Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood, 102, 200–206.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang, F.L., & Casey, P.J. (1996). Protein prenylation: molecular mechanisms and functional consequences. Ann Rev Biochem, 65, 241–269.CrossRefPubMedGoogle Scholar
  36. 36.
    Zimolo, Z., Wesolowski, G., & Rodan, G.A. (1995). Acid extrusion is induced by osteoclast attachment to bone. Inhibition by alendronate and calcitonin. J Clin Invest, 96, 2277–2283.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Keith Thompson
    • 1
    Email author
  • Anke J. Roelofs
    • 1
  • Marjo Jauhiainen
    • 2
  • Hannu Mönkkönen
    • 2
  • Jukka Mönkkönen
    • 2
  • Michael J. Rogers
    • 1
  1. 1.Bone and Musculoskeletal Research ProgrammeInstitute of Medical Sciences, University of AberdeenAberdeenUK
  2. 2.Department of PharmaceuticsUniversity of KuopioKuopioFinland

Personalised recommendations