Regulation of Bone Formation and Immune Cell Development by Schnurri Proteins

  • Dallas C. JonesEmail author
  • Laurie H. Glimcher
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 658)


Although identified over a decade ago, the function and physiological significance of the mammalian Schnurri protein family remained largely unknown. However, the recent generation and characterization of mice bearing null mutations in the individual Schnurri genes has led to the discovery of unexpected yet central roles for these large zinc-finger proteins in several biological processes. Here, we review findings of these studies and discuss the importance of the Schnurri protein family in regulating both the immune and skeletal systems.


Schnurri Skeletal system Immune system Osteoblasts T lymphocytes 


  1. 1.
    Affolter, M., T. Marty, M. A. Vigano, & A. Jazwinska (2001). Nuclear interpretation of Dpp signaling in Drosophila. Embo J 20(13): 3298–3305.CrossRefPubMedGoogle Scholar
  2. 2.
    Arora, K., H. Dai, S. G. Kazuko, J. Jamal, M. B. O‘Connor, A. Letsou, & R. Warrior (1995). The Drosophila schnurri gene acts in the Dpp/TGF beta signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81(5): 781–790CrossRefPubMedGoogle Scholar
  3. 3.
    Baldwin, A. S., Jr., K. P., LeClair, H. Singh, & P. A. Sharp (1990). A large protein containing zinc finger domains binds to related sequence elements in the enhancers of the class I major histocompatibility complex and kappa immunoglobulin genes.Mol Cell Biol 10(4): 1406–1414.PubMedGoogle Scholar
  4. 4.
    Boehm, T. (2008). Thymus development and function. Curr Opin Immunol 20(2): 178–184.CrossRefPubMedGoogle Scholar
  5. 5.
    Fan, C. M., & T. Maniatis (1990). A DNA-binding protein containing two widely separated zinc finger motifs that recognize the same DNA sequence. Genes Dev 4(1): 29–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Grieder, N. C., D. Nellen, R. Burke, K. Basler, & M. Affolter (1995). Schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 81(5): 791–800.CrossRefPubMedGoogle Scholar
  7. 7.
    Hong, J. W., C. E. Allen, & L. C. Wu (2003). Inhibition of NF-kappaB by ZAS3, a zinc-finger protein that also binds to the kappaB motif. Proc Natl Acad Sci U S A 100(21): 12301–12306.CrossRefPubMedGoogle Scholar
  8. 8.
    Iuchi, S. (2001). Three classes of C2H2 zinc finger proteins.Cell Mol Life Sci 58(4): 625–635.CrossRefPubMedGoogle Scholar
  9. 9.
    Jin, W., T. Takagi, S. N. Kanesashi, T. Kurahashi, T. Nomura, J. Harada, & S. Ishii (2006). Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell 10(4): 461–471.CrossRefPubMedGoogle Scholar
  10. 10.
    Jones, D. C., M. N. Wein, M. Oukka, J. G. Hofstaetter, M. J. Glimcher, & L. H. Glimcher (2006). Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312(5777): 1223–1227.CrossRefPubMedGoogle Scholar
  11. 11.
    Karsenty, G., & E. F. Wagner (2002). Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4): 389–406.CrossRefPubMedGoogle Scholar
  12. 12.
    Kiel, M. J., & S. J. Morrison (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8(4): 290–301.CrossRefPubMedGoogle Scholar
  13. 13.
    Kimura, M. Y., H. Hosokawa, M. Yamashita, A. Hasegawa, C. Iwamura, H. Watarai, M. Taniguchi et al. (2005). Regulation of T helper type 2 cell differentiation by murine Schnurri-2. J Exp Med 201(3): 397–408.CrossRefPubMedGoogle Scholar
  14. 14.
    Kimura, M. Y., C. Iwamura, A. Suzuki, T. Miki, A. Hasegawa, K. Sugaya, M. Yamashita et al. (2007). Schnurri-2 controls memory Th1 and Th2 cell numbers in vivo. J Immunol 178(8): 4926–4936.PubMedGoogle Scholar
  15. 15.
    Kronenberg, H. M. (2003). Developmental regulation of the growth plate. Nature 423(6937): 332–336.CrossRefPubMedGoogle Scholar
  16. 16.
    Mariani, F. V., & G. R. Martin (2003). Deciphering skeletal patterning: clues from the limb. Nature 423(6937): 319–325.CrossRefPubMedGoogle Scholar
  17. 17.
    Nomura, N., M. J. Zhao, T. Nagase, T. Maekawa, R. Ishizaki, S. Tabata, & S. Ishii (1991). HIV-EP2, a new member of the gene family encoding the human immunodeficiency virus type 1 enhancer-binding protein. Comparison with HIV-EP1/PRDII-BF1/MBP-1. J Biol Chem 266(13): 8590–8594.PubMedGoogle Scholar
  18. 18.
    Oukka, M., S. T. Kim, G. Lugo, J. Sun, L. C. Wu, & L. H. Glimcher (2002). A mammalian homolog of Drosophila schnurri, KRC, regulates TNF receptor-driven responses and interacts with TRAF2. Mol Cell 9(1): 121–131.CrossRefPubMedGoogle Scholar
  19. 19.
    Oukka, M., M. N. Wein, & L. H. Glimcher (2004). Schnurri-3 (KRC) interacts with c-Jun to regulate the IL-2 gene in T cells. J Exp Med 199(1): 15–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Pyrowolakis, G., B. Hartmann, B. Muller, K. Basler, & M. Affolter (2004). A simple molecular complex mediates widespread BMP-induced repression during Drosophila development. Dev Cell 7(2): 229–240.CrossRefPubMedGoogle Scholar
  21. 21.
    Saita, Y., T. Takagi, K. Kitahara, M. Usui, K. Miyazono, Y. Ezura, K. Nakashima et al. (2007). Lack of Schnurri-2 expression associates with reduced bone remodeling and osteopenia. J Biol Chem 282(17): 12907–12915.CrossRefPubMedGoogle Scholar
  22. 22.
    Takagi, T., J. Harada, & S. Ishii (2001). Murine Schnurri-2 is required for positive selection of thymocytes. Nat Immunol 2(11): 1048–1053.CrossRefPubMedGoogle Scholar
  23. 23.
    Wein, M. N., D. C. Jones, & L. H. Glimcher (2005). Turning down the system: counter-regulatory mechanisms in bone and adaptive immunity. Immunol Rev 208: 66–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Wu, L. C., C. H. Mak, N. Dear, T. Boehm, L. Foroni, & T. H. Rabbitts (1993). Molecular cloning of a zinc finger protein which binds to the heptamer of the signal sequence for V(D)J recombination. Nucleic Acids Res 21(22): 5067–5073.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Infectious Disease and ImmunologyHarvard School of Public HealthBostonUSA
  2. 2.Department of Infectious Disease and Immunology, Harvard School of Public Health and Department of MedicineHarvard Medical School, Brigham and Women´s HospitalBostonUSA

Personalised recommendations