Advertisement

How Do Bone Cells Secrete Proteins?

  • Haibo ZhaoEmail author
  • Yuji Ito
  • Jean Chappel
  • Norma Andrews
  • F. Patrick Ross
  • Steven L. Teitelbaum
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 658)

Abstract

Osteoclasts (OCs), which are the exclusive bone resorbing cells, degrade skeletal matrix by forming an intimate relationship with the bone surface. Thus, when OCs attach to bone, they produce an actin-rich sealing zone representing a gasket-like structure, which isolates the resorptive milieu from the general extracellular space. This “resorptive microenvironment” contains a ruffled border, the unique bone-degrading organelle of the OC, which consists of a complex, villous-like organization of the plasma membrane. This structure appears only in resorbing cells and is the product of signals derived from the bone matrix. These signals polarize as yet undefined acidified vesicles containing the OC vacuolar H+ATPase towards the bone-apposed plasma membrane, into which they insert, thereby increasing its complexity. The ruffled border is thus the most definitive marker of the resorbing osteoclast.

Keywords

Osteoclasts Exocytosis Ruffled border 

References

  1. 1.
    Andrews, N.W., & Chakrabarti, S. (2005). There’s more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol, 15:626–631.CrossRefGoogle Scholar
  2. 2.
    Baron, R., Neff, L., Brown, W., Courtoy, P.J., Louvard, D., & Farquhar, M. (1988). Polarized secretion of lysosomal enzymes: co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol, 106:1863–1872.CrossRefGoogle Scholar
  3. 3.
    Chieregatti, E., & Meldolesi, J. (2005). Regulated exocytosis: new organelles for non-secretory purposes. Nature Rev, 6:181–187.CrossRefGoogle Scholar
  4. 4.
    Jahn, R., & Scheller, R.H.(2006). SNAREs – engines for membrane fusion. Nature Rev, 7:631–643.CrossRefGoogle Scholar
  5. 5.
    Martinez, I., Chakrabarti, S., Hellevik, T., Morehead, J., Fowler, K., & Andrews, N.W. (2000). Synaptotagmin VII Regulates Ca2+-dependent Exocytosis of Lysosomes in Fibroblasts. J Cell Biol, 148:1141–1150.CrossRefGoogle Scholar
  6. 6.
    Rizo, J., Chen, X., & Arac, D. (2006). Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol, 16:339–350.CrossRefGoogle Scholar
  7. 7.
    Teitelbaum, S.L. (2007). Osteoclasts: what do they do and how do they do it? Am J Pathol, 170:427–435.CrossRefGoogle Scholar
  8. 8.
    Teitelbaum, S.L., & Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat Rev Genet, 4:638–649.CrossRefGoogle Scholar
  9. 9.
    Vaananen, H.K., Zhao, H., Mulari, M., & Halleen, J.M. (2000). The cell biology of osteoclast function. J Cell Sci, 113:377–381.Google Scholar
  10. 10.
    Zhao, H., Ito, Y., Chappel, J., Andrews, N.W., Teitelbaum, S.L., & Ross, F.P. (2008). Synaptotagmin VII regulates bone remodeling by modulating osteoclast and osteoblast secretion. Dev Cell, 14:914–925.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Haibo Zhao
    • 1
    Email author
  • Yuji Ito
    • 1
  • Jean Chappel
    • 1
  • Norma Andrews
    • 2
  • F. Patrick Ross
    • 1
  • Steven L. Teitelbaum
    • 1
  1. 1.Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA
  2. 2.Section of microbial PathogenesisYale University School of MedicineNew HavenUSA

Personalised recommendations