Skip to main content

Eph and Ephrin Interactions in Bone

  • Conference paper
  • First Online:
Book cover Osteoimmunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 658))

Abstract

Bone cells communicate with each other using various cell surface molecules. Membrane-bound ephrin ligands and Eph tyrosine kinase receptors have been characterized in diverse biological processes, including angiogenesis and neuronal development. Several ephrins and Ephs are expressed in osteoclasts and osteoblasts and regulate bone mineral metabolism through bidirectional signaling into not only receptor-expressing cells but also into ligand-expressing cells. We propose that interaction between ephrinB2-expressing osteoclasts and EphB4-expressing osteoblasts facilitates the transition from bone resorption to bone formation during bone remodeling. Other groups have reported the regulation of ephrinB2 by PTH or PTHrP and the possible involvement of EphB4 in osteoarthritis. It is likely that various ephrins and Ephs mediate interaction among bone cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan, E. H., Hausler, K. D., Wei, T., Gooi, J. H., Quinn, J. M., Crimeen-Irwin, B., Pompolo, S. et al. (2008). EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res, 23, 1170–1181.

    Article  CAS  PubMed  Google Scholar 

  2. Compagni, A., Logan, M., Klein, R., & Adams, R. H. (2003). Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell, 5, 217–230.

    Article  CAS  PubMed  Google Scholar 

  3. Davy, A., Bush, J. O., & Soriano, P. (2006). Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol, 4, e315.

    Article  PubMed  Google Scholar 

  4. Edwards, C. M., & Mundy, G. R. (2008). Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci, 5, 263–272.

    CAS  PubMed  Google Scholar 

  5. Eph Nomenclature Committee (1997). Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. Cell, 90, 403–404.

    Google Scholar 

  6. Fuller, K., Wong, B., Fox, S., Choi, Y., & Chambers, T. J. (1998). TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med, 188, 997–1001.

    Article  CAS  PubMed  Google Scholar 

  7. Harmey, D., Stenbeck, G., Nobes, C. D., Lax, A. J., & Grigoriadis, A. E. (2004). Regulation of osteoblast differentiation by Pasteurella multocida toxin (PMT): a role for Rho GTPase in bone formation. J Bone Miner Res, 19, 661–670.

    Article  CAS  PubMed  Google Scholar 

  8. Hattner, R., Epker, B. N., & Frost, H. M. (1965). Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature, 206, 489–490.

    Article  CAS  PubMed  Google Scholar 

  9. Irie, N., Takada, Y., Watanabe, Y., Matsuzaki, Y., Naruse, C., Asano, M., Iwakura, Y. Sudha, T., & Matsuo, K. (2009). Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem, 284, 14637–14644.

    Google Scholar 

  10. Ishii, M., Egen, J. G., Klauschen, F., Meier-Schellersheim, M., Saeki, Y., Vacher, J., Proia, R.L., & Germain, R. N. (2009). Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature, 458, 524–528.

    Google Scholar 

  11. Kim, I., Ryu, Y. S., Kwak, H. J., Ahn, S. Y., Oh, J. L., Yancopoulos, G. D. et al. (2002). EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. Faseb J, 16, 1126–1128.

    CAS  PubMed  Google Scholar 

  12. Kim, Y., Sato, K., Asagiri, M., Morita, I., Soma, K., & Takayanagi, H. (2005). Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem, 280, 32905–32913.

    Article  CAS  PubMed  Google Scholar 

  13. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E. et al. (2004). Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature, 428, 758–763.

    Article  CAS  PubMed  Google Scholar 

  14. Korff, T., Braun, J., Pfaff, D., Augustin, H. G., & Hecker, M. (2008). Role of ephrinB2 expression in endothelial cells during arteriogenesis: impact on smooth muscle cell migration and monocyte recruitment. Blood, 112, 73–81.

    Article  CAS  PubMed  Google Scholar 

  15. Kuroda, C., Kubota, S., Kawata, K., Aoyama, E., Sumiyoshi, K., Oka, M. et al. (2008). Distribution, gene expression, and functional role of EphA4 during ossification. Biochem Biophys Res Commun, 374, 22–27.

    Article  CAS  PubMed  Google Scholar 

  16. Kwan Tat, S., Pelletier, J. P., Amiable, N., Boileau, C., Lajeunesse, D., Duval, N., & Martel-Pelletier, J. (2008). Activation of the receptor EphB4 by its specific ligand ephrin B2 in human osteoarthritic subchondral bone osteoblasts. Arthritis Rheum, 58, 3820–3830.

    Article  PubMed  Google Scholar 

  17. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T. et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93, 165–176.

    Article  CAS  PubMed  Google Scholar 

  18. Matsuo, K., & Irie, N. (2008). Osteoclast-osteoblast communication. Arch Biochem Biophys, 473, 201–209.

    Article  CAS  PubMed  Google Scholar 

  19. Matsuo, K., & Ray, N. (2004). Osteoclasts, mononuclear phagocytes, and c-Fos: new insight into osteoimmunology. Keio J Med, 53, 78–84.

    Article  CAS  PubMed  Google Scholar 

  20. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 6, 483–495.

    Article  CAS  PubMed  Google Scholar 

  21. Mundy, G. R., & Elefteriou, F. (2006). Boning up on ephrin signaling. Cell, 126, 441–443.

    Article  CAS  PubMed  Google Scholar 

  22. Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.

    Article  CAS  PubMed  Google Scholar 

  23. Pelletier, J. P., Boileau, C., Brunet, J., Boily, M., Lajeunesse, D., Reboul, P., Laufer, S., & Martel-Pelletier, J. (2004). The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone, 34, 527–538.

    Article  CAS  PubMed  Google Scholar 

  24. Pfaff, D., Heroult, M., Riedel, M., Reiss, Y., Kirmse, R., Ludwig, T., Korff, T., Hecker, M., & Augustin, H. G. (2008). Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes. J Cell Sci, 121, 3842–3850.

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J. M., Martin, T. J., & Suda, T. (1988). Osteoblastic cells are involved in osteoclast formation. Endocrinology, 123, 2600–2602.

    Article  CAS  PubMed  Google Scholar 

  26. Twigg, S. R., Kan, R., Babbs, C., Bochukova, E. G., Robertson, S. P., Wall, S. A., Morriss-Kay, G. M., & Wilkie, A. O. (2004). Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A, 101, 8652–8657.

    Article  CAS  PubMed  Google Scholar 

  27. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S. et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A, 95, 3597–3602.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, C., Irie, N., Takada, Y., Shimoda, K., Miyamoto, T., Nishiwaki, T., Suda, T., & Matsuo, K.(2006). Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab, 4,111–121.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Matsuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Matsuo, K. (2009). Eph and Ephrin Interactions in Bone. In: Choi, Y. (eds) Osteoimmunology. Advances in Experimental Medicine and Biology, vol 658. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1050-9_10

Download citation

Publish with us

Policies and ethics