Eph and Ephrin Interactions in Bone

  • Koichi MatsuoEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 658)


Bone cells communicate with each other using various cell surface molecules. Membrane-bound ephrin ligands and Eph tyrosine kinase receptors have been characterized in diverse biological processes, including angiogenesis and neuronal development. Several ephrins and Ephs are expressed in osteoclasts and osteoblasts and regulate bone mineral metabolism through bidirectional signaling into not only receptor-expressing cells but also into ligand-expressing cells. We propose that interaction between ephrinB2-expressing osteoclasts and EphB4-expressing osteoblasts facilitates the transition from bone resorption to bone formation during bone remodeling. Other groups have reported the regulation of ephrinB2 by PTH or PTHrP and the possible involvement of EphB4 in osteoarthritis. It is likely that various ephrins and Ephs mediate interaction among bone cells.


Eph Ephrin Osteoclast Bone remodeling 


  1. 1.
    Allan, E. H., Hausler, K. D., Wei, T., Gooi, J. H., Quinn, J. M., Crimeen-Irwin, B., Pompolo, S. et al. (2008). EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res, 23, 1170–1181.CrossRefPubMedGoogle Scholar
  2. 2.
    Compagni, A., Logan, M., Klein, R., & Adams, R. H. (2003). Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell, 5, 217–230.CrossRefPubMedGoogle Scholar
  3. 3.
    Davy, A., Bush, J. O., & Soriano, P. (2006). Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol, 4, e315.CrossRefPubMedGoogle Scholar
  4. 4.
    Edwards, C. M., & Mundy, G. R. (2008). Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci, 5, 263–272.PubMedGoogle Scholar
  5. 5.
    Eph Nomenclature Committee (1997). Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. Cell, 90, 403–404.Google Scholar
  6. 6.
    Fuller, K., Wong, B., Fox, S., Choi, Y., & Chambers, T. J. (1998). TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med, 188, 997–1001.CrossRefPubMedGoogle Scholar
  7. 7.
    Harmey, D., Stenbeck, G., Nobes, C. D., Lax, A. J., & Grigoriadis, A. E. (2004). Regulation of osteoblast differentiation by Pasteurella multocida toxin (PMT): a role for Rho GTPase in bone formation. J Bone Miner Res, 19, 661–670.CrossRefPubMedGoogle Scholar
  8. 8.
    Hattner, R., Epker, B. N., & Frost, H. M. (1965). Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature, 206, 489–490.CrossRefPubMedGoogle Scholar
  9. 9.
    Irie, N., Takada, Y., Watanabe, Y., Matsuzaki, Y., Naruse, C., Asano, M., Iwakura, Y. Sudha, T., & Matsuo, K. (2009). Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem, 284, 14637–14644.Google Scholar
  10. 10.
    Ishii, M., Egen, J. G., Klauschen, F., Meier-Schellersheim, M., Saeki, Y., Vacher, J., Proia, R.L., & Germain, R. N. (2009). Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature, 458, 524–528.Google Scholar
  11. 11.
    Kim, I., Ryu, Y. S., Kwak, H. J., Ahn, S. Y., Oh, J. L., Yancopoulos, G. D. et al. (2002). EphB ligand, ephrinB2, suppresses the VEGF- and angiopoietin 1-induced Ras/mitogen-activated protein kinase pathway in venous endothelial cells. Faseb J, 16, 1126–1128.PubMedGoogle Scholar
  12. 12.
    Kim, Y., Sato, K., Asagiri, M., Morita, I., Soma, K., & Takayanagi, H. (2005). Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem, 280, 32905–32913.CrossRefPubMedGoogle Scholar
  13. 13.
    Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E. et al. (2004). Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature, 428, 758–763.CrossRefPubMedGoogle Scholar
  14. 14.
    Korff, T., Braun, J., Pfaff, D., Augustin, H. G., & Hecker, M. (2008). Role of ephrinB2 expression in endothelial cells during arteriogenesis: impact on smooth muscle cell migration and monocyte recruitment. Blood, 112, 73–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuroda, C., Kubota, S., Kawata, K., Aoyama, E., Sumiyoshi, K., Oka, M. et al. (2008). Distribution, gene expression, and functional role of EphA4 during ossification. Biochem Biophys Res Commun, 374, 22–27.CrossRefPubMedGoogle Scholar
  16. 16.
    Kwan Tat, S., Pelletier, J. P., Amiable, N., Boileau, C., Lajeunesse, D., Duval, N., & Martel-Pelletier, J. (2008). Activation of the receptor EphB4 by its specific ligand ephrin B2 in human osteoarthritic subchondral bone osteoblasts. Arthritis Rheum, 58, 3820–3830.CrossRefPubMedGoogle Scholar
  17. 17.
    Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T. et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93, 165–176.CrossRefPubMedGoogle Scholar
  18. 18.
    Matsuo, K., & Irie, N. (2008). Osteoclast-osteoblast communication. Arch Biochem Biophys, 473, 201–209.CrossRefPubMedGoogle Scholar
  19. 19.
    Matsuo, K., & Ray, N. (2004). Osteoclasts, mononuclear phagocytes, and c-Fos: new insight into osteoimmunology. Keio J Med, 53, 78–84.CrossRefPubMedGoogle Scholar
  20. 20.
    McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 6, 483–495.CrossRefPubMedGoogle Scholar
  21. 21.
    Mundy, G. R., & Elefteriou, F. (2006). Boning up on ephrin signaling. Cell, 126, 441–443.CrossRefPubMedGoogle Scholar
  22. 22.
    Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133, 38–52.CrossRefPubMedGoogle Scholar
  23. 23.
    Pelletier, J. P., Boileau, C., Brunet, J., Boily, M., Lajeunesse, D., Reboul, P., Laufer, S., & Martel-Pelletier, J. (2004). The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone, 34, 527–538.CrossRefPubMedGoogle Scholar
  24. 24.
    Pfaff, D., Heroult, M., Riedel, M., Reiss, Y., Kirmse, R., Ludwig, T., Korff, T., Hecker, M., & Augustin, H. G. (2008). Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes. J Cell Sci, 121, 3842–3850.CrossRefPubMedGoogle Scholar
  25. 25.
    Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J. M., Martin, T. J., & Suda, T. (1988). Osteoblastic cells are involved in osteoclast formation. Endocrinology, 123, 2600–2602.CrossRefPubMedGoogle Scholar
  26. 26.
    Twigg, S. R., Kan, R., Babbs, C., Bochukova, E. G., Robertson, S. P., Wall, S. A., Morriss-Kay, G. M., & Wilkie, A. O. (2004). Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A, 101, 8652–8657.CrossRefPubMedGoogle Scholar
  27. 27.
    Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S. et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A, 95, 3597–3602.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao, C., Irie, N., Takada, Y., Shimoda, K., Miyamoto, T., Nishiwaki, T., Suda, T., & Matsuo, K.(2006). Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab, 4,111–121.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Collaborative Research ResourcesSchool of Medicine, Keio UniversityTokyoJapan

Personalised recommendations