Skip to main content

Protein Quantum Dynamics? (R. H. Austin1)

  • Chapter
  • First Online:
The Physics of Proteins

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2704 Accesses

Abstract

The puzzling and possibly profound effect we want to examine in this chapter is one model for how chemical free energy may get trapped in a protein rather than flowing ergodically into the thermodynamic limit of equal occupation of all the degrees of freedom.

1 Department of Physics, Princeton University, Princeton, NJ 08544, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. Dynamics of ligand-binding to myoglobin. Biochem., 14(24):5355–73, 1975.

    Article  Google Scholar 

  2. Guglielmo Lanzani, Sandro De Silvestri, and Giulio Cerullo. Coherent Vibrational Dynamics. CRC Press, Boca Raton, FL, 2007.

    Google Scholar 

  3. A. S. Davydov. Solitons and energy-transfer along protein molecules. J. Theoret. Bio., 66(2):377–87, 1977.

    Article  Google Scholar 

  4. G. Careri, U. Buontempo, F. Carta, E. Gratton, and A. C. Scott. Infrared-absorption in acetanilide by solitons. Phys. Rev. Lett., 51(4):304–7, 1983.

    Article  ADS  Google Scholar 

  5. G. Careri, U. Buontempo, F. Galluzzi, A. C. Scott, E. Gratton, and E. Shyamsunder. Spectroscopic evidence for davydov-like solitons in acetanilide. Phys. Rev. B, 30(8):4689–4702, 1984.

    Article  ADS  Google Scholar 

  6. P. W. Milonni and J. H. Eberley. Lasers. John Wiley and Sons, New York, 1988.

    Google Scholar 

  7. A. Scott. Davydov’s soliton. Phys. Rep., 217:1–67, 1982.

    Article  ADS  Google Scholar 

  8. T. Kawakami, Y. Kitagawa, F. Matsuoka, Y. Yamashita, H. Isobe, H. Nagao, and K. Yamaguchi. Possibilities of molecular magnetic metals and high T-c superconductors in field effect transistor configurations. Int. J. Quant. Chem., 85(4–5):619–35, 2001.

    Article  Google Scholar 

  9. P. C. W. Davies. Does quantum mechanics play a non-trivial role in life? Biosys., 78(1–3):69–79, 2004.

    Article  Google Scholar 

  10. R. Penrose. The emperors new mind–concerning computers, minds, and the laws of physics. Behav. and Brain Sci., 13(4):643–54, 1990.

    Article  MathSciNet  Google Scholar 

  11. Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong. Insulating behavior of ?-DNA on the micron scale. Phys. Rev. Lett., 89(19):198102–5, 2002.

    Google Scholar 

  12. N. F. Mott. Metal-insulator transitions. Contemp. Phys., 14(5):401–13, 1973.

    Article  ADS  Google Scholar 

  13. H. H. Mantsch and D. Chapman. Infrared Spectroscopy of Biomolecules. Wiley-Liss, New York, 1986.

    Google Scholar 

  14. C. Kittel. Introduction to Solid State Physics, 7th Edition. Wiley and Sons, New York, 2007.

    Google Scholar 

  15. R. H. Austin, A. H. Xie, L. van der Meer, B. Redlich, P. A. Lindgard, H. Frauenfelder, and D. Fu. Picosecond thermometer in the amide I band of myoglobin. Phys. Rev. Lett., 94(12):12810–4, 2005.

    Google Scholar 

  16. J. C. Eilbeck, P. S. Lomdahl, and A. C. Scott. Soliton structure in crystalline acetanilide. Phys. Rev, B, 30(8):4703–12, 1984.

    Article  ADS  Google Scholar 

  17. W. Fann, L. Rothberg, M. Roberson, S. Benson, J. Madey, S. Etemad, and R. Austin. Dynamical test of Davydov-type solitons in acetanilide using a picosecond free-electron laser. Phys. Rev. Lett., 64(5):607–10, 1990.

    Article  ADS  Google Scholar 

  18. A. H. Xie, L. van der Meer, W. Hoff, and R. H. Austin. Long-lived amide I vibrational modes in myoglobin. Phys. Rev. Lett., 84(23):5435–8, 2000.

    Article  ADS  Google Scholar 

  19. R. H. Austin, M. K. Hong, C. Moser, and J. Plombon. Far-infrared perturbation of electron-tunneling in reaction centers. Chem. Phys., 158(2–3):473–86, 1991.

    Article  ADS  Google Scholar 

  20. R. H. Austin, M. W. Roberson, and P. Mansky. Far-infrared perturbation of reaction-rates in myoglobin at low-temperatures. Phys. Rev. Lett., 62(16):1912–15, 1989.

    Article  ADS  Google Scholar 

  21. A. Xie, L. van der Meer, and R. H. Austin. Excited-state lifetimes of far-infrared collective modes in proteins. J. Bio. Phys., 28(2):147–54, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frauenfelder, H. (2010). Protein Quantum Dynamics? (R. H. Austin1). In: Chan, S., Chan, W. (eds) The Physics of Proteins. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1044-8_16

Download citation

Publish with us

Policies and ethics