Skip to main content

Supercooled Liquids and Glasses

  • Chapter
  • First Online:
The Physics of Proteins

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2722 Accesses

Abstract

Complex systems range from supercooled liquids to glasses , to proteins, to the brain, to societies. Do these systems share properties? It is likely that they do. A hierarchically organized energy landscape and a range of motions, connecting substates, are candidates. In this chapter we sketch some aspects of the physics of supercooled liquids and glasses. Starting with these materials may appear to be strange, but many properties of glasses and proteins are similar, and it is easier to recognize crucial properties of the dynamics in the less complex system. The information covering the physics of glasses is staggering. A Web search engeine has over 3 × 108 entries for “glass” and 7 × 106 for glass transition! We restrict the treatment to a few salient facts that are useful for understanding related phenomena in proteins. More information can be found in books and selected articles [1]–[6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Donth. The Glass Transition. Springer, New York, 2001.

    Book  Google Scholar 

  2. R. Zalle. The Physics of Amorphous Solids. Wiley, New York, 1983.

    Book  Google Scholar 

  3. S. Brawer. Relaxation in Viscous Liquids and Glasses. American Ceramic Society, Columbus, Ohio, 1985.

    Google Scholar 

  4. C. A. Angell. Formation of glasses from liquids and biopolymers. Science, 267:1924–35, 1995.

    Article  ADS  Google Scholar 

  5. M. D. Ediger, C. A. Angell, and S. R. Nagel. Supercooled liquids and glasses. J. Phys. Chem., 100:13200–12, 1996.

    Article  Google Scholar 

  6. V. Lubchenko and P. G. Wolynes. Theory of structural glasses and supercooled liquids. Ann. Rev. Phys. Chem., 58:235–66, 2006.

    Article  ADS  Google Scholar 

  7. G. Toulouse. Theory of the frustration effect in spin glasses. Comm. Physics, 2:115–9, 1977.

    Google Scholar 

  8. K. H. Fischer and J. A. Hertz. Spin Glasses. Cambridge University Press, Cambridge, 1991.

    Book  Google Scholar 

  9. V. Lubchenko and P. G. Wolynes. Theory of aging in structural glasses. J. Chem. Phys., 121:2852–65, 2004.

    Article  ADS  Google Scholar 

  10. M. Henke, M. Pleimling, and R. Sanctuary. Ageing and the Glass Transition. Springer, Berlin, 2007.

    Book  Google Scholar 

  11. M. Goldstein. Viscous liquids and the glass transition: A potential energy barrier picture. J. Chem. Phys., 51:3728–39, 1969.

    Article  ADS  Google Scholar 

  12. J. Fan, E. I. Cooper, and C. A. Angell. Glasses with strong calorimetric ?-glass transitions and the relation to the protein glass transition problem. J. Phys. Chem., 98:9345–49, 1994.

    Article  Google Scholar 

  13. P. H. Poole, T. Grande, C. A. Angell, and P. F. McMillan. Polymorphism in liquids and glasses. Science, 275:322–3, 1997.

    Article  Google Scholar 

  14. A. Pais. Subtle Is the Lord ….; The Science and the Life of Albert Einstein. Oxford Univ. Press, Oxford, 1982.

    Google Scholar 

  15. A. Einstein. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annalen der Physik., 22:180–90, 1907.

    ADS  MATH  Google Scholar 

  16. C. A. Angelll. The old problem of glass and the glass transition, and the many new twists. Proc. Natl. Acad. Sci. USA, 92:6675–82, 1995.

    Article  ADS  Google Scholar 

  17. C. A. Angell. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev., 102:2627–50, 2002.

    Article  Google Scholar 

  18. D. Chandler. Introduction to Modern Statistical Mechanics. Oxford Univ. Press, Oxford, 1987.

    Google Scholar 

  19. R. Richert and A. Blumen, editors. Disorder Effects on Relaxational Processes. Springer, Berlin, 1994.

    Google Scholar 

  20. P. Lunkenheimer, U. Schneider, R. Brand, and A. Loidl. Glassy dynamics. Contemp. Phys., 41:15–36, 2000.

    Article  ADS  Google Scholar 

  21. C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin. Relaxation in glassforming liquids and amorphous solids. J. Applied Phys., 88:3113–50, 2000.

    Article  ADS  Google Scholar 

  22. R. Richert. Heterogeneous dynamics in liquids: Fluctuations in space and time. J. Phys. Condens. Matter, 14:R703–38, 2002.

    Article  ADS  Google Scholar 

  23. F. Affouard, M. Descamps, and K. L. Ngai, editors. Relaxations in Complex Systems. Elsevier, Netherlands, 2006. The papers have also been published in J. Non-Crystalline Solids, 352: 4371–5227, 2006.

    Google Scholar 

  24. P. Debye. Polar Molecules. Chemical Catalog Company, New York, 1929.

    MATH  Google Scholar 

  25. F. Kremer and A. Schönhals. Broadband Dielectric Spectroscopy. Springer, Berlin, 2003.

    Book  Google Scholar 

  26. U. Kaatze and Y. Feldman. Broadband dielectric spectrometry of liquids and biosysytems. Meas. Sci. Tech., 17:R17–35, 2006.

    Article  ADS  Google Scholar 

  27. S. Sudo, S. Tsubotani, M. Shimomura, N. Shinyashiki, and S. Yagihara. Dielectric study of the ? and ? processes in supercooled ethylene glycol oligomer-water mixtures. J. Chem. Phys., 121:7332–40, 2004.

    Article  ADS  Google Scholar 

  28. G. P. Johari and M. Goldstein. Viscous liquids and the glass transition. II: Secondary relaxations in glasses of rigid molecules. J. Phys. Chem., 53:2372–88, 1996.

    Article  Google Scholar 

  29. K. L. Ngai and M. Paluch. Classification of secondary relaxation in glass-formers based on dynamic properties. J. Phys. Chem., 120:857–73, 2004.

    Article  Google Scholar 

  30. H. Bässler, G. Schänherr, M. Abkowitz, and D. Pai. Hopping transport in prototypical organic glasses. Phys. Rev. B, 26:3105–13, 1982.

    Article  ADS  Google Scholar 

  31. R. Zwanzig. Diffusion in a rough potential. Proc. Natl. Acad. Sci. USA, 85:2029–30, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  32. J. D. Bryngelson and P. G. Wolynes. Intermediates and barrier crossing in a random energy model (with applications to protein folding). J. Phys. Chem., 93:6902–15, 1989.

    Article  Google Scholar 

  33. A. Eucken. Temperature variation of heat conductivity of non-metals. Annalen der Physik, 34:185–221, 1911.

    Article  ADS  Google Scholar 

  34. R. C. Zeller and R. O. Pohl. Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B, 4:2029–41, 1971.

    Article  ADS  Google Scholar 

  35. W. A. Phillips, editor. Amorphous Solids: Low-Temperature Properties. Springer, Berlin, 1981.

    Google Scholar 

  36. V. Lubchenko and P. G. Wolynes. The microscopy theory of low temperature amorphous solids. Adv. Chem. Phys., 136:95–206, 2007.

    Google Scholar 

  37. C. A. Angel, et al. Potential energy, relaxation, vibrational dynamics and the Boson peak, of hyperquenched glasses. J. Phys. Condens. Matter, 15:S1051–68, 2003.

    Article  ADS  Google Scholar 

  38. V. Lubchenko and P. G. Wolynes. The original of the Boson peak and thermal conductivity plateau in low-temperature glasses. Proc. Natl. Acad. Sci. USA, 100:1515-18, 2003.

    Article  ADS  Google Scholar 

  39. P. Schellenberg and J. Friedrich. Optical spectroscopy and disorder phenomena in polymers, proteins, and glasses. In R. Richert and A. Blumen, editors, Disorder Effects on Relaxational Processes. Springer, Berlin, 1994.

    Google Scholar 

  40. R. J. Silbey, J. M. A. Koedijk, and S. Voelker. Time and temperature dependence of optical linewidths in glasses at low temperature: Spectral diffusion. J. Phys. Chem., 105:901–9, 1996.

    Article  Google Scholar 

  41. J. M. A. Koedijk, R. Wannemacher, R. J. Silbey, and S. Voelker. Spectral diffusion in organic glasses: Time dependence of spectral holes. J. Phys. Chem., 100:11945–53, 1996.

    Article  Google Scholar 

  42. J. C. Dyre. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys., 78:953–72, 2006.

    Article  ADS  Google Scholar 

  43. T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes. Scaling concepts for their dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A, 40:1045–54, 1989.

    Article  ADS  Google Scholar 

  44. J. D. Stevenson, J. Schmalian, and P. G. Wolynes. The shapes of cooperatively rearranging regions in glass-forming liquids. Nature Physics, 2:268–74, 2006.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frauenfelder, H. (2010). Supercooled Liquids and Glasses. In: Chan, S., Chan, W. (eds) The Physics of Proteins. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1044-8_14

Download citation

Publish with us

Policies and ethics