Skip to main content

Reaction Theory

  • Chapter
  • First Online:
  • 2717 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Reactions and conformational fluctuations govern all aspects of biological processes, from enzyme catalysis to transfer of charge, matter, and information. Any deep understanding of biological reactions must be based on a sound theory of reaction dynamics. Most of the knowledge of reaction dynamics, however, has been deduced from two-body interactions of small molecules in the gas phase [1]. In contrast, biomolecules provide a complex but highly organized environment that can affect the course of the reaction. Fortunately, the complexity implies a richness of phenomena that allows the examination of fundamental aspects of reaction dynamics. Biomolecules, in particular heme proteins , form an excellent laboratory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Glasstone, K. J. Laidler, and H. Eyring. The Theory of Rate Processes. McGraw-Hill, 1941 (the standard work).

    Google Scholar 

  2. P. Hänggi, P. Talkner, and M. Borkovec. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys., 62:251–341, 1990.

    Article  ADS  Google Scholar 

  3. S. Arrhenius. Über die Reaktionsgeschwindigkeit der Inversion von Rohrzucker durch Sôuren. Z. Physik. Chem., 4:226–48, 1889.

    Google Scholar 

  4. B. G. Wicke and D. O. Harris. Comparison of three numerical techniques for calculating eigenvalues of an unsymmetrical double minimum oscillator. J. Chem. Phys., 64:5236–42, 1976.

    Article  ADS  Google Scholar 

  5. See, for instance, R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, 2nd edition, Oxford Univ. Press, New York, 2000.

    Google Scholar 

  6. M. Dresden. H. A. Kramers: Between Tradition and Revolution. Springer, New York, 1987.

    Google Scholar 

  7. H.A. Kramers. Brownian motion in a field force and the diffusion of chemical reactions. Physica, 7:284–304, 1940.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. H. C. Brinkman. Brownian motion in a field of force and the diffusion theory of chemical reactions. 2. Physica, 22:149–55, 1956.

    Article  ADS  Google Scholar 

  9. R. Landauer and J. A. Swanson. Frequency factors in the thermally activated process. Phys. Rev., 121:1668–74, 1961.

    Article  ADS  Google Scholar 

  10. P. Hänggi. Escape from a metastable state. J. Stat. Phys., 42:105–48, 1986.

    Article  ADS  Google Scholar 

  11. H. Frauenfelder and P. G. Wolynes. Rate theories and puzzles of hemeprotein kinetics. Science, 229(4711):337–45, 1985.

    Article  ADS  Google Scholar 

  12. B. Somogyi and S. Damjanovich. Relationship between the lifetime of an enzyme-substrate complex and the properties of the molecular environment. J. Theor. Bio., 48:393–401, 1975.

    Article  Google Scholar 

  13. B. Gavish. The role of geometry and elastic strains in dynamic states of proteins. Biophys. Struct. Mech., 4:37–52, 1978.

    Article  Google Scholar 

  14. B. Gavish and M. M. Werber. Viscosity-dependent structural fluctuations in enzyme catalysis. Biochemistry, 18:1269–75, 1979.

    Article  Google Scholar 

  15. D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, L. Reinisch, A. H. Reynolds, L. B. Sorensen, and K. T. Yue. Solvent viscosity and protein dynamics. Biochemistry, 19:5147–57, 1980.

    Article  Google Scholar 

  16. D. Beece, S. F. Bowne, J. Czégé, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, J. Marque, P. Ormos, L. Reinisch, and K. T. Yue. The effect of viscosity on the photocycle of bacteriorhodopsin. Photochem. Photobiol., 33:517–22, 1981.

    Article  Google Scholar 

  17. D. G. Truhlar, W. L. Hase, and J. T. Hynes. The current status of transition state theory. J. Phys. Chem., 87:2664–82, 1983.

    Article  Google Scholar 

  18. G. R. Fleming, S. H. Courtney, and M. W. Balk. Activated barrier crossing: Comparison of experiment and theory. J. Stat. Phys., 42:83–104, 1986.

    Article  ADS  Google Scholar 

  19. R. F. Grote and J. T. Hynes. The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models. J. Chem. Phys., 73:2715–32, 1980.

    Article  ADS  MathSciNet  Google Scholar 

  20. R. F. Grote and J. T. Hynes. Saddle point model for atom transfer reactions in solution. J. Chem. Phys., 75:2791–98, 1981.

    Article  MathSciNet  Google Scholar 

  21. R. F. Grote and J. T. Hynes. Energy diffusion-controlled reactions in solution. J. Chem. Phys., 77:3736–43, 1982.

    Article  ADS  Google Scholar 

  22. P. Hänggi and F. Mojtabai. Thermally activated escape rate in presence of long-time memory. Phys. Rev., A26:1168–70, 1982.

    Article  ADS  Google Scholar 

  23. P. Hänggi. Physics of ligand migration in biomolecules. J. Stat. Phys., 73:401–12, 1983.

    Article  Google Scholar 

  24. B. Chance et al., editors. Tunneling in Biological Systems. Johnson Research Foundation Colloquia. Academic Press, New York, 1979.

    Google Scholar 

  25. R. P. Bell. The Tunnel Effect in Chemistry. Chapman and Hall, London, 1980.

    Book  Google Scholar 

  26. D. DeVault. Quantum-Mechanical Tunnelling in Biological Systems, 2nd edition. Cambridge Univ. Press, Cambridge, 1984.

    Google Scholar 

  27. V. I. Goldanskii, L. I. Trakhtenberg, , and V. N. Fleurov. Tunneling Phenomena in Chemical Physics. Gordon and Breach, New York, 1989.

    Google Scholar 

  28. V. I. Goldanskii. The role of the tunnel effect in the kinetics of chemical reactions at low temperatures. Dokl. Akad. Nauk SSSR, 124:1261–4, 1959. See also P. Hänggi, et al., Phys. Rev. Lett., 55:761-4, 1985.

    Google Scholar 

  29. See, for instance, L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, London, 1958.

    MATH  Google Scholar 

  30. N. Alberding, R. H. Austin, K. W. Beeson, S. S. Chan, L. Eisenstein, H. Frauenfelder, and T. M. Nordlund. Tunneling in ligand binding to heme proteins. Science, 192(4243):1002–4, 1976.

    Article  ADS  Google Scholar 

  31. N. Alberding, S. S. Chan, L. Eisenstein, H. Frauenfelder, D. Good, I. C. Gunsalus, T. M. Nordlund, M. F. Perutz, A. H. Reynolds, and L. B. Sorensen. Binding of carbon monoxide to isolated hemoglobin chains. Biochemistry, 17:43–51, 1978.

    Article  Google Scholar 

  32. H. Frauenfelder. In B. Chance et al., editors, Tunneling in Biological Systems. Academic Press, New York, 1979. pp. 627-49.

    Book  Google Scholar 

  33. J. O. Alben, D. Beece, S. F. Bowne, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, P. P. Moh, L. Reinisch, A. H. Reynolds, and K. T. Yue. Isotope effect in molecular tunneling. Phys. Rev. Lett., 44:1157–60, 1980.

    Article  ADS  Google Scholar 

  34. J. O. Alben, D. Beece, S. F. Bowne, W. Doster, L. Eisenstein, H. Frauenfelder, D. Good, J. D. McDonald, M. C. Marden, P. P. Moh, L. Reinisch, A. H. Reynolds, and K. T. Yue. Infrared spectroscopy of photodissociated carboxymyoglobin at low temperatures. Proc. Natl. Acad. Sci. USA, 79:3744–8, 1982.

    Article  ADS  Google Scholar 

  35. J. A. Sussman. A comprehensive quantum theory of diffusion. Ann. Phys. Paris, 6:135–56, 1971.

    Google Scholar 

  36. A. O. Caldeira and A. J. Leggett. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett., 46:211–14, 1981.

    Article  ADS  Google Scholar 

  37. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zerger. Dynamics of the dissipative two-state system. Rev. Mod. Phys., 59:1–85, 1987.

    Article  ADS  Google Scholar 

  38. P. G. Wolynes. Quantum theory of activated events in condensed phases. Phys. Rev. Lett., 47:968–71, 1981.

    Article  ADS  Google Scholar 

  39. J. Jortner and J. Ulstrup. Dynamics of nonadiabatic atom transfer in biological systems. Carbon monoxide binding to hemoglobin. J. Amer. Chem. Soc., 101–4:3744, 1979.

    Article  Google Scholar 

  40. J. Ulstrup. Charge Transfer Processes in Condensed Media (Lecture Notes in Chemistry, 10). Springer, Berlin, 1979.

    Google Scholar 

  41. G. Pfister and W. Känzig. Isotopeneffekt in der paraelastischen Relaxation. Zeitschrift fr Physik B Condensed Matter, 10:231–64, 1969.

    Google Scholar 

  42. D. A. Case and M. Karplus. Dynamics of ligand binding to heme proteins. J. Mol. Bio., 132:343–68, 1979.

    Article  Google Scholar 

  43. J. A. McCammon and S. H. Northrup. Gated binding of ligands to proteins. Nature, 293:316–17, 1981.

    Article  ADS  Google Scholar 

  44. A. Szabo, D. Shoup, S. H. Northrup, and J. A. McCammon. Stochastically gated diffusion-influenced reactions. J. Chem. Phys., 77:4484–93, 1982.

    Article  ADS  Google Scholar 

  45. Y. A. Berlin, A. L. Burin, L. D. A. Siebbeles, and M. A. Ratner. Conformationally gated rate processes in biological macromolecules. J. Phys. Chem. A, 105:5666–78, 2001.

    Article  Google Scholar 

  46. G. Baym, editor. Lectures on Quantum Mechanics. W. A. Benjamin, New York, 1969.

    MATH  Google Scholar 

  47. L. D. Landau and E. M. Lifshitz. Quantum Mechanics. Pergamon Press, London, 1958.

    MATH  Google Scholar 

  48. W. Kauzmann. Quantum Chemistry. Academic Press, New York, 1957.

    MATH  Google Scholar 

  49. E. J. Heller and R. C. Brown. Vibrational relaxation of highly excited diatomics. V. the V-V channel in HF(v)+HF(0) collision. J. Chem. Phys., 79:3336–66, 1983.

    Article  ADS  Google Scholar 

  50. L. Landau. Phys. Z. Sow., 1:89, 1932. Z. Phys. Sov. 2:46 (1932).

    Google Scholar 

  51. C. Zener. Non-adiabatic crossing of energy levels. Proc. Roy. Soc. London, A137:696–702, 1932.

    Article  ADS  Google Scholar 

  52. E. C. G. Stueckelberg. Helv. Phys. Acta, 5:369–422, 1932.

    Google Scholar 

  53. J. Ulstrup. Charge Transfer Processes in Condensed Media. Springer, Berlin, 1979.

    Book  Google Scholar 

  54. L. D. Zusman. Outer-sphere electron transfer in polar solvents. Chem. Phys., 49:295–304, 1980.

    Article  ADS  MathSciNet  Google Scholar 

  55. R. E. Cline, Jr. and P. G. Wolynes. Stochastic dynamic models of curve crossing phenomena in condensed phases. J. Chem. Phys., 86:3836–44, 1987.

    Article  ADS  Google Scholar 

  56. I. V. Aleksandrov and V. I. Goldanskii. Sov. Sci. Rev. B. Chem., 11:1–67, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frauenfelder, H. (2010). Reaction Theory. In: Chan, S., Chan, W. (eds) The Physics of Proteins. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1044-8_13

Download citation

Publish with us

Policies and ethics