Skip to main content

Superlattice and Quantum Well

  • Chapter
  • First Online:
  • 1278 Accesses

Part of the book series: Microdevices ((MDPF))

Abstract

In three-dimensional crystals, the band edge carrier motion can be described by a quasi-particle model. The interaction of the particle with the periodic crystal field is included in the effective mass, m  ∗ . To first order, the electrons in the conduction band of a crystal with inversion symmetry have m  ∗  independent of crystal direction, and the quasi-particle energy, E 3D, is in an isotropic distribution in k-space,

$${E}^{3\mathrm{D}}(k) = \frac{{\hbar }^{2}} {2{m}^{{_\ast}}}({k}_{x}^{2} + {k}_{ y}^{2} + {k}_{ z}^{2}),$$
(5.1)

where k x , k y , k z denote the wave numbers in the x, y, z directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys Rev Lett 42:673–676

    Google Scholar 

  • Altarelli M (1985) Electronic structure of two-dimensional semiconductor systems. J Lumines 30:472–487

    CAS  Google Scholar 

  • Ancilotto F, Fasolino A, Maan JC (1988) Hole-subband mixing in quantum wells: A magnetooptic study. Phys Rev B 38:1788–1799

    Google Scholar 

  • Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505

    CAS  Google Scholar 

  • Ando T (1974a) Theory of quantum transport in a two-dimensional electron system under magnetic fields II: Single-site approximation under strong fields. Jpn J Phys Soc 36:1521–1529

    Google Scholar 

  • Ando T (1974b) Theory of quantum transport in a two-dimensional electron system under magnetic fields III: Many-site approximation. Jpn J Phys Soc 37:622–630

    Google Scholar 

  • Ando T (1974c) Theory of quantum transport in a two-dimensional electron system under magnetic fields IV: Oscillatory conductivity. Jpn J Phys Soc 37:1233–1237

    Google Scholar 

  • Ando T (1983) Electron localization in a two-dimensional system in strong magnetic fields I: Case of short-range scatterers. Jpn J Phys Soc 52:1740–1749

    CAS  Google Scholar 

  • Ando T (1984a) Electron localization in a two-dimensional system in strong magnetic fields II: Long-range scatterers and response functions. Jpn J Phys Soc 53:3101–3111

    Google Scholar 

  • Ando T (1984b) Electron localization in a two-dimensional system in strong magnetic fields III: Impurity-concentration dependence and level-mixing effects. Jpn J Phys Soc 53:3126–3135

    Google Scholar 

  • Ando T (1992) In: Fukuyama H, Ando T (eds) Transport Phenomena in Mesoscopic systems. Springer, Berlin, p 185

    Google Scholar 

  • Ando T, Uemura Y (1974) Theory of quantum transport in a two-dimensional electron system under magnetic fields I: Characteristics of level broadening and transport under strong fields. Jpn J Phys Soc 36:959–967

    Google Scholar 

  • Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437–672

    CAS  Google Scholar 

  • Aoki H, Ando T (1981) Effect of localization on the hall conductivity in the two-dimensional system in strong magnetic fields. Solid State Commun 38:1079–1082

    CAS  Google Scholar 

  • Aoki H, Ando T (1985) Critical localization in two-dimensional Landau quantization. Phys Rev Lett 54:831–834

    Google Scholar 

  • Aoki H, Ando T (1986) Critical localization and low-temperature transport in two-dimensional Landau quantization. Surf Sci 170:249–255

    CAS  Google Scholar 

  • Arakawa Y, Sakaki H (1982) Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett 40:939

    CAS  Google Scholar 

  • Bastard G (1988) Wave Mechanics Applied to Semiconductor Heterostructures. Halsted, New York

    Google Scholar 

  • Bastard G, Brum JA, Ferreira R (1991) In: Ehrenreich, Turnbull D (eds) Solid State Physics, Vol. 44. Academic, New York, p 229

    Google Scholar 

  • Becker CR, Latussek V, Li M, Pfeuffer-Jeschke A, Landwehr G (1999) Valence band offset in HgTe ∕ Hg1 − xCdxTe superlattices. J Electron Mater 28:826–829

    CAS  Google Scholar 

  • Becker CR, Latussek V, Pfeuffer-Jeschke A, Landwehr G, Molenkamp LW (2000) Band structure and its temperature dependence for type-III HgTe ∕ Hg1 − xCdxTe superlattices and their semimetal constituent. Phys Rev B 62:10353–10363

    CAS  Google Scholar 

  • BenDaniel DJ, Duke CB (1966) Space-charge effects on electron tunneling. Phys Rev 152: 683–692

    CAS  Google Scholar 

  • Braun E, Schumacher B, Warnecke P (1997) In: Landwehr G, Ossau W (eds) High magnetic fields in the physics of semiconductors II. World Scientific, Singapore, p 1005

    Google Scholar 

  • Büttiker M (1986) Four-terminal phase-coherent conductance. Phys Rev Lett 57:1761–1764

    Google Scholar 

  • Büttiker M (1988a) Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys Rev B 38:9375–9389

    Google Scholar 

  • Büttiker M (1988b) Symmetry of electrical conduction. IBM J Res Dev 32:317–334

    Google Scholar 

  • Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C 17:6039–6045

    Google Scholar 

  • Chakraborty T, Pietiläinen P (1995) The quantum hall effect. In: Cardona M, Fulde P, Klitzing KV, et al. (eds) Springer Series in Solid-State Sciences Vol 85. Springer, Berlin

    Google Scholar 

  • Chalker JT, Coddington PD (1988) Percolation, quantum tunnelling and the integer Hall effect. J Phys C 21:2665–2679

    Google Scholar 

  • Chang LL, Esaki L, Tsau R (1974) Resonant tunneling in semiconductor double barriers. Appl Phys Lett 24:593

    CAS  Google Scholar 

  • Chen AB, Weisz G, Sher A (1972) Temperature dependence of the electron density of states and dc electrical resistivity of disordered binary alloys. Phys Rev B 5:2897–2924

    Google Scholar 

  • Chklovskii DB, Shklovskii BI, Glazman LI (1992) Electrostatics of edge channels. Phys Rev B 46:4026–4034

    Google Scholar 

  • Cho AY, Arthur JR (1975) In: Somerjai G, McCaldin J (eds) Progress in Solid State Chemistry. Vol 10. Pergamon, New York, p 175

    Google Scholar 

  • Chou ZJ, Gui YS, Su XZ, Dai N, Guo SL, Chu JH (2004) Giant Rashba spin splitting in HgTe/HgCdTe quantum wells. Acta Physica Sinica 53:1186–1190

    Google Scholar 

  • Chu JH, Sher A (2007) Physics and Properties of Narrow Gap Semi-Conductors. Springer, New York

    Google Scholar 

  • Chu L (2001) PhD thesis. Technische Universität München

    Google Scholar 

  • Coleridge PT (1991) Small-angle scattering in two-dimensional electron gases. Phys Rev B 44: 3793–3801

    Google Scholar 

  • Das B, Miller DC, Datta S, Reifenberger R, Hong WP, Bhattacharya PK, Singh J, Jaffe M (1989) Evidence for spin splitting in InxGa1-xAs/In0.52Al0.48As heterostructures as B → 0. Phys Rev B 39:1411–1414

    CAS  Google Scholar 

  • Datta S, Das B (1990) Electronic analog of the electro-optic modulator. Appl Phys Lett 56:665

    CAS  Google Scholar 

  • Dingle R, Störmer HL, Gossard AC, Wiegmann W (1978) Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl Phys Lett 33:665

    CAS  Google Scholar 

  • Dresselhaus G (1955) Spin-Orbit Coupling Effects in Zinc Blende Structures. Phys Rev 100: 580–586

    CAS  Google Scholar 

  • Drude P (1900a) Zur Elektronentheorie der Metalle I. Teil, Annalen der Physik 1:566–613

    CAS  Google Scholar 

  • Drude P (1900b) Zur Elektronentheorie der Metalle: II. Teil, Annalen der Physik 3:369–402

    CAS  Google Scholar 

  • Englert T, Klitzing KV (1978) Analysis of ρxx minima in surface quantum oscillations on (100) n-type silicon inversion layers. Surf Sci 73:70–80

    CAS  Google Scholar 

  • Esaki L, Sakaki H (1977) New photoconductor. IBM Tech Disc Bull 20:2456–2457

    Google Scholar 

  • Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61–65

    CAS  Google Scholar 

  • Faurie JP, Million A, Piaguet J (1982) CdTe-HgTe multilayers grown by molecular beam epitaxy. Appl Phys Lett 41:713

    CAS  Google Scholar 

  • Gerhardts RR (1975a) Path-integral approach to the two-dimensional magneto-conductivity problem I: General formulation of the approach. Z Physik B 21:275–283

    Google Scholar 

  • Gerhardts RR (1975b) Path-integral approach to the two-dimensional magneto-conductivity problem II: Application to n-type (100)-surface inversion layers of p-silicon. Z Physik B 21:285–294

    Google Scholar 

  • Gerhardts RR (1976) Cumulant approach to the two-dimensional magneto-conductivity problem. Surf Sci 58:227–234

    CAS  Google Scholar 

  • Goschenhofer F, Gerschütz J, Pfeuffer-Jeschke1 A, Hellmig R, Becker CR, Landwehr G (1998) Investigation of iodine as a donor in MBE grown Hg1–xCdxTe. J Electron Mater 27:532–535

    Google Scholar 

  • Groves SH, Brown RN, Pidgeon CR (1967) Interband Magnetoreflection and Band Structure of HgTe. Phys Rev 161:779–793

    CAS  Google Scholar 

  • Grundler D (2000) Large Rashba splitting in InAs quantum wells due to electron wave function penetration into the barrier layers. Phys Rev Lett 84:6074–6077

    CAS  Google Scholar 

  • Grundmann M, Stier O, Bimberg D (1995) InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys Rev B 52:11969–11981

    CAS  Google Scholar 

  • Halperin BI (1982) Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys Rev B 25:2185–2190

    Google Scholar 

  • Harris KA, Hwang S, Blanks DK, Cook JW, Schetzina JF, Otsuka N, Baukus JP, Hunter AT (1986) Characterization study of a HgTe-CdTe superlattice by means of transmission electron microscopy and infrared photoluminescence. Appl Phys Lett 48:396

    CAS  Google Scholar 

  • Haug H, Koch SW (1993) Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore

    Google Scholar 

  • Haug RJ, MacDonald AH, Streda P, Klitzing KV (1988) Quantized multichannel magnetotransport through a Barrier in two dimensions. Phys Rev Lett 61:2797–2800

    CAS  Google Scholar 

  • Hetzler SR, Baukus JP, Hunter AT, Faurie JP (1985) Infrared photoluminescence spectra from HgTe-CdTe superlattices. Appl Phys Lett 47:260

    CAS  Google Scholar 

  • Hoffman CA, Meyer JR, Bartolil FJ, Lansari Y, Cook JW, Schetzina JF (1991) Electron mobilities and quantum Hall effect in modulation-doped HgTe-CdTe superlattices. Phys Rev B 44: 8376–8379

    CAS  Google Scholar 

  • Hoffman CA, Meyer JR, Bartoil FJ (1993) Novel magnetotransport and magneto-optical processes in semimetallic HgTe-CdTe superlattices. Semicond Sci Technol 8:S48–S57

    CAS  Google Scholar 

  • Huckestein B, Kramer B (1990) One-parameter scaling in the lowest Landau band: Precise determination of the critical behavior of the localization length. Phys Rev Lett 64:1437–1440

    Google Scholar 

  • Isihara V, Smrčka L (1986) Density and magnetic field dependences of the conductivity of two-dimensional electron systems. J Phys C: Solid State Phys 19:6777–6789

    Google Scholar 

  • Janssen M, Hajdu J, Viehweg O (1994) In: Hajdu J (ed) Introduction to theory of the integer quantum hall effect. VCH Verlagsgesellshaft GmbH, Weiheim

    Google Scholar 

  • Jones CE, Casselman TN, Faurie JP, Perkowitz S, Schulman JN (1985) Infrared properties and band gaps of HgTe/CdTe superlattices. Appl Phys Lett 47:140

    CAS  Google Scholar 

  • Kamgar A, Kneschaurek P, Dorda G, Koch JF (1974) Resonance spectroscopy of electronic levels in a surface accumulation layer. Phys Rev Lett 32:1251–1254

    CAS  Google Scholar 

  • Kane EO (1957) Band structure of indium antimonide. J Phys Chem Solids 1:249–261

    Google Scholar 

  • Kirk WP, Kobiela PS, Schiebel RA, Reed MA (1986) Investigation of the two-dimensional electron gas in HgCdTe by quantum Hall effect measurements. J Vac Sci Technol A 4:2132–2136

    CAS  Google Scholar 

  • Kittel C (1968) Introduction to Solid State Physics, 3rd Ed. Wiley, New York, p 320

    Google Scholar 

  • Klitzing KV (1990) Ten years quantum hall effect. Adv Solid State Phys 30:25–39

    Google Scholar 

  • Klitzing KV (1993) The quantum hall effect - An edge phenomenon? Physica B 184:1–6

    Google Scholar 

  • Klitzing KV, Ebert G (1983) The quantum hall effect. Physica B + C 117–118 Part 2:682–687

    Google Scholar 

  • Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494–497

    Google Scholar 

  • Koch S, Haug RJ, Klitzing KV, Ploog K (1991) Size-dependent analysis of the metal-insulator transition in the integral quantum Hall effect. Phys Rev Lett 67:883–886

    CAS  Google Scholar 

  • Krijin MPCM (1991) Heterojunction band offsets and effective masses in III-V quaternary alloys. Semicond Sci Technol 6:27–31

    Google Scholar 

  • Kubo R, Miyake SJ, Hashitsume N (1965) In: Seitz F, Turnbell D (eds) Solid State Physics Vol 17. Academic, New York, p 269

    Google Scholar 

  • Landau L (1930) Diamagnetism in metals. Z Physik 64:629–637

    CAS  Google Scholar 

  • Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1:223–238

    Google Scholar 

  • Landauer R (1988) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 32:306–316

    Google Scholar 

  • Landwehr G, Gerschütz J, Oehling S, Pfeuffer-Jeschke A, Latussek V, Becker CR (2000) Quantum transport in n-type and p-type modulation-doped mercury telluride quantum wells. Physica E 6:713–717

    CAS  Google Scholar 

  • Laughlin RB (1981) Quantized hall conductivity in two dimensions. Phys Rev B 23:5632–5633

    Google Scholar 

  • Lier K, Gerhardts RR (1994) Self-consistent calculations of edge channels in laterally confined two-dimensional electron systems. Phys Rev B 50:7757–7767

    CAS  Google Scholar 

  • Liu H, Buchanan M, Wasilewski Z (1998) How good is the polarization selection rule for intersubband transitions? Appl Phys Lett 72:1682

    CAS  Google Scholar 

  • Luttinger JM (1956) Quantum theory of cyclotron resonance in semi-conductors: General theory. Phys Rev 102:1030–1041

    CAS  Google Scholar 

  • Luttinger JM, Kohn W (1955) Motion of electrons and holes in perturbed periodic fields. Phys Rev 97:869–883

    CAS  Google Scholar 

  • Meaden GT (1965) Electrical Resistance of Metals. Plenum, New York

    Google Scholar 

  • Mii YJ, Wang KL, Karunasiri RPG, Yuh PF (1990) Observation of large oscillator strengths for both 1 → 2 and 1 → 3 intersubband transitions of step quantum wells. Appl Phys Lett 56:1046

    CAS  Google Scholar 

  • Mott NF (1966) The electrical properties of liquid mercury. Philos Mag 13:989–1014

    CAS  Google Scholar 

  • Müller G, Weiss D, Koch S, Klitzing KV, Nickel H, Schlapp W, Lösch R (1990) Edge channels and the role of contacts in the quantum Hall regime. Phys Rev B 42:7633

    Google Scholar 

  • Müller G, Weiss D, Khaetskii AV, Klitzing KV, Koch S, Nickel H, Schlapp W, Lösch R (1992) Equilibration length of electrons in spin-polarized edge channels. Phys Rev B 45:3932–3935

    Google Scholar 

  • Ohta K (1971a) Broadening of Landau levels in two-dimensional electron gas: Its effect on surface capacitance. Jpn J Appl Phys 10:850–863

    CAS  Google Scholar 

  • Ohta K (1971b) Broadening of Landau levels in two-dimensional electron gas II: Transverse magnetoconductance. Jpn J Phys Soc 31:1627–1638

    CAS  Google Scholar 

  • Omar MA (1975) Elementary Solid State Physics: Principles and Applications. Addison-Wesley, Michigan, p 238

    Google Scholar 

  • Ono Y (1982) Localization of electrons under strong magnetic fields in a two-dimensional system. Jpn J Phys Soc 51:237–243

    Google Scholar 

  • Pan JL, West L C, Walker S J, Malik RJ, Walker JF (1990) Inducing normally forbidden transitions within the conduction band of GaAs quantum wells. Appl Phys Lett 57:366

    CAS  Google Scholar 

  • Pfeuffer-Jeschke A, Goschenhofer F, Cheng SJ, Latussek V, Gerschutz J, Becker CR, Gerhardts RR, Landwehr G (1998) Cyclotron masses of asymmetrically doped HgTe quantum wells. Physica B-Condensed Matter 256–258:486–489

    Google Scholar 

  • Pidgeon CR, Brown RN (1966) Interband magneto-absorption and faraday rotation in InSb. Phys Rev 146:575–583

    CAS  Google Scholar 

  • Pincherle L (1971) Electron energy bands in solids. MacDonald, p 98

    Google Scholar 

  • Prange RE (1981) Quantized hall resistance and the measurement of the fine-structure constant. Phys Rev B 23:4802–4805

    CAS  Google Scholar 

  • Prange RE, Girvin SM (1990) The Quantum Hall Effect. Springer, New York

    Google Scholar 

  • Rashba EI (1960) FiZ Tverd Tela (Leningrad) 2:1224; Sov Phys Solid State 2:1109

    Google Scholar 

  • Sarma SD (2001) Spintronics. American Scientist 89:516

    Google Scholar 

  • Satpathy S, Martin RM, Van de Walle CG (1988) Electronic properties of the (100) (Si)/(Ge) strained-layer superlattices. Phys Rev B 38:13237–13245

    CAS  Google Scholar 

  • Schultz M, Merkt U, Sonntag A, Rössler U, Winkler R, Colin T, Helgesen P, Skauli T, Løvold S (1998) Crossing of conduction- and valence-subband Landau levels in an inverted HgTe/CdTe quantum well. Phys Rev B 57:14772–14775

    CAS  Google Scholar 

  • Shao J, Dörnen A, Winterhoff R, Scholz F (2002) Ordering parameter and band-offset determination for ordered GaxIn1 − xP ∕ (Al0. 66Ga0. 34)yIn1 − yP quantum wells. Phys Rev B 66:035109

    Google Scholar 

  • Shubnikov L, DeHaas WJ (1930) Leiden Commun 207c

    Google Scholar 

  • Sizmann R (1986) Diploma Arbeiter. T U München, München

    Google Scholar 

  • Sporken R, Sivananthan S, Faurie JP, Ehlers DH, Fraxedas J, Ley L, Pireaux JJ, Caudano R (1989) Temperature-dependent photoemission study of the HgTe–CdTe valence-band discontinuity. J Vac Sci Technol A 7:427–430

    CAS  Google Scholar 

  • Störmer HL (1999) Nobel Lecture: The fractional quantum Hall effect. Rev Mod Phys 71:875–889

    Google Scholar 

  • Störmer HL, Schlesinger Z, Chang A, Tsui DC, Gossard AC, Wiegmann W (1983) Energy structure and quantized hall effect of two-dimensional holes. Phys Rev Lett 51:126–129

    Google Scholar 

  • Teran FJ, Potemski M, Maude DK, Andrearczyk T, Jaroszynski J, Karczewski G (2002) Pauli paramagnetism and Landau level crossing in a modulation doped CdMnTe/CdMgTe quantum well. Phys Rev Lett 88:186803

    CAS  Google Scholar 

  • Touloukian J (1967) Thermophysical properties research literature retrieval guide Vols II and III. Purdue University Press, La Fayette

    Google Scholar 

  • Truchseβ von M, Latussek V, Goschenhofer F, Becker CR, Landwehr G, Batke E, Sizmann R, Helgesen P (1995) Magneto-optics and valence-band discontinuity in a HgTe-Hg1-xCdxTe superlattice. Phys Rev B 51:17618–17623

    Google Scholar 

  • Tsui DC, Störmer HL, Gossard AC (1982) Two-dimensional magnetotransport in the extreme quantum limit. Phys Rev Lett 48:1559–1562

    CAS  Google Scholar 

  • Van de Walle CG (1989) Band lineups and deformation potentials in the model-solid theory. Phys Rev B 39:1871–1883

    Google Scholar 

  • Van de Walle CG, Martin RM (1986) Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys Rev B 34:5621–5634

    Google Scholar 

  • Van de Walle CG, Martin RM (1987) Theoretical study of band offsets at semiconductor interfaces. Phys Rev B 35:8154–8165

    Google Scholar 

  • Wang TY, Stringfellow GB (1990) Strain effects on GaxIn1–xAs/InP single quantum wells grown by organometallic vapor-phase epitaxy with 0 ≤ x ≤ 1. J Appl Phys 67:344–352

    CAS  Google Scholar 

  • Wees BJV, Willems EMM, Harmans CJPM, Beenakker CWJ, Houten HV, Williamson JG, Foxon CT, Harris JJ (1989) Anomalous integer quantum Hall effect in the ballistic regime with quantum point contacts. Phys Rev Lett 62:1181–1184

    Google Scholar 

  • Weiler MH, Aggarwal RL, Lax B (1978) Warping- and inversion-asymmetry-induced cyclotron-harmonic transitions in InSb. Phys Rev B 17:3269–3283

    CAS  Google Scholar 

  • Weisbuch C, Vinter B (1991) Quantum Semiconductor Structures. Academic, San Diego, CA

    Google Scholar 

  • Weiss D, Klitzing KV (1987) In: Landwehr G (ed) Springer Series in Solid-State Sciences Vol 71. Springer, Berlin, p 57

    Google Scholar 

  • Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Molnár SV, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: A spin-based electronics vision for the future. Science 294:1488–1495

    CAS  Google Scholar 

  • Yang RQ, Xu JM, Sweeny M (1994) Selection rules of intersubband transitions in conduction-band quantum wells. Phys Rev B 50:7474–7482

    CAS  Google Scholar 

  • Zhang XC (2001) Dissertation Zu Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians. Universität Würzburg, Würzburg

    Google Scholar 

  • Zhang XC, Peuffer-Jeschke A, Ortner K, Hock V, Buhmann H, Becker CR, Landwehr G (2001) Phys Rev B 63:245305

    Google Scholar 

  • Zunger A (1998) Electronic-structure theory of semiconductor quantum dots. MRS Bulletin 23:35

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhao Chu .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Chu, J., Sher, A. (2010). Superlattice and Quantum Well. In: Device Physics of Narrow Gap Semiconductors. Microdevices. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1040-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1040-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1039-4

  • Online ISBN: 978-1-4419-1040-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics