Skip to main content

Negative Electrodes in Lithium Systems

  • Chapter
  • First Online:
Energy Storage
  • 5535 Accesses

Abstract

A great deal of attention is currently being given to the development and use of batteries in which lithium plays an important role. Looked at very simply, there are two major reasons for this. One is that lithium is a very electropositive element, and its employment in electrochemical cells can lead to larger voltages than are possible with the other alkali metals. The second positive aspect of lithium systems is the possibility of major reductions in weight, at least partly due to the light weight of elemental lithium and many of its compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Huggins and D. Elwell, J. Crystal Growth 37, 159 (1977)

    Article  Google Scholar 

  2. C. Wagner, J. Electrochem. Soc. 101, 225 (1954)

    Article  Google Scholar 

  3. C. Wagner, J. Electrochem. Soc. 103, 571 (1956)

    Article  Google Scholar 

  4. G. Deublein and R.A. Huggins, Solid State Ionics 18/19, 1110 (1986)

    Google Scholar 

  5. U. von Sacken, E. Nodwell and J.R. Dahn, Solid State Ionics 69, 284 (1994)

    Article  Google Scholar 

  6. M. Winter, K.-C. Moeller and J.O. Besenhard, “Carbonaceous and Graphitic Anodes”, in Lithium Batteries, Science and Technology, ed. by G-A Nazri and G. Pistoia, Kluwer Academic Publishers (2004), p. 144

    Google Scholar 

  7. J.R. Dahn, A.K. Sleigh, H. Shi, B.M. Way, W.J. Weydanz, J.N. Reimers, Q. Zhong and U. von Sacken, “Carbons and Graphites as Substitutes for the Lithium Anode”, in Lithium Batteries, ed. by G. Pistoia, Elsevier (1994), p. 1

    Google Scholar 

  8. K. Fredenhagen and G. Cadenbach, Z. Anorg. Allg. Chem. 158, 249 (1926)

    Article  Google Scholar 

  9. D. Guerard and A. Herold, Carbon 13, 337 (1975)

    Google Scholar 

  10. G.K. Wertheim, P.M.Th.M. Van Attekum and S. Basu, Solid State Commun. 33, 1127 (1980)

    Google Scholar 

  11. L.B. Ebert, “Intercalation Compounds of Graphite”, in Annual Review of Materials Science, Vol. 6, ed. by R.A. Huggins, Annual Reviews, Inc. (1976), p. 181

    Google Scholar 

  12. J. O. Besenhard and H. P. Fritz, J. Electroanal. Chem. 53, 329 (1974)

    Article  Google Scholar 

  13. R. Yazami and P. Touzain, J. Power Sources 9, 365 (1983)

    Article  Google Scholar 

  14. S. Basu, U. S. Patent No 4,304,825 (Dec. 8, 1981)

    Google Scholar 

  15. S. Basu, U. S. Patent No 4,423,125 (Dec. 27, 1983)

    Google Scholar 

  16. T. Nagaura and K. Tozawa, in Progress in Batteries and Solar Cells, JEC Press, Inc. 9, 209 (1990)

    Google Scholar 

  17. T. Nagaura, in Progress in Batteries and Solar Cells, JEC Press, Inc. 10, 218 (1991)

    Google Scholar 

  18. R.E. Franklin, Proc. Roy Soc (London) A209, 196 (1951)

    Google Scholar 

  19. R. Yazami, personal communication

    Google Scholar 

  20. N. Daumas and A. Herold, C. R. Acad. Sci. C 286, 373 (1969)

    Google Scholar 

  21. T. Zheng, Y. Liu, E.W. Fuller, S. Tseng, U. von Sacken and J.R. Dahn, J. Electrochem. Soc. 142, 2581 (1995)

    Article  Google Scholar 

  22. T. Zheng, J.S. Xue and J.R. Dahn, Chem. Mat. 8, 389 (1996)

    Article  Google Scholar 

  23. T.Zheng, W.R. McKinnon and J.R. Dahn, J. Electrochem. Soc. 143, 2137 (1996)

    Article  Google Scholar 

  24. N. P Yao, L.A. Heredy and R.C. Saunders, J. Electrochem. Soc. 118, 1039 (1971)

    Google Scholar 

  25. E.C. Gay, et al., J. Electrochem. Soc. 123, 1591 (1976)

    Article  Google Scholar 

  26. S.C. Lai, J. Electrochem. Soc. 123, 1196 (1976)

    Article  Google Scholar 

  27. R.A. Sharma and R.N. Seefurth, J. Electrochem Soc. 123, 1763 (1976)

    Article  Google Scholar 

  28. R.N. Seefurth and R.A. Sharma, J. Electrochem. Soc. 124, 1207 (1977)

    Article  Google Scholar 

  29. H. Ogawa, Proceedings of 2nd International Meeting on Lithium Batteries, (Elsevier Sequoia) (1984), p. 259

    Google Scholar 

  30. J. Wang, P. King and R.A. Huggins, Solid State Ionics 20, 185 (1986)

    Article  Google Scholar 

  31. J. Wang, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 133, 457 (1986)

    Article  Google Scholar 

  32. B.A. Boukamp, G.C. Lesh and R.A. Huggins, J. Electrochem. Soc. 128, 725 (1981)

    Article  Google Scholar 

  33. B.A. Boukamp, G.C. Lesh and R.A. Huggins, in Proc. Symp. on Lithium Batteries, ed. by H.V. Venkatasetty, Electrochem. Soc. (1981), p. 467.

    Google Scholar 

  34. R.A. Huggins and B.A. Boukamp, US Patent 4,436,796

    Google Scholar 

  35. A. Anani, S. Crouch-Baker and R.A. Huggins, in Proc. Symp. on Lithium Batteries, ed. by A.N. Dey, Electrochem. Soc. (1987), p. 382

    Google Scholar 

  36. A. Anani, S. Crouch-Baker and R.A. Huggins, J. Electrochem. Soc. 135, 2103 (1988)

    Article  Google Scholar 

  37. C. J. Wen and R. A. Huggins, J. Solid State Chem. 35, 376 (1980)

    Article  Google Scholar 

  38. C.J. Wen and R.A. Huggins, J. Electrochem. Soc. 128, 1181 (1981)

    Article  Google Scholar 

  39. J. Yang, M. Winter, and J. O. Besenhard, Solid State Ionics 90, 281 (1996)

    Article  Google Scholar 

  40. R. A. Huggins and W. D. Nix, Ionics 6, 57 (2000)

    Article  Google Scholar 

  41. A. Timmons, PhD Dissertation, Dalhousie University (2007)

    Google Scholar 

  42. M. Fujimoto, S. Fujitani, M. Shima, et al., US Patent 7,195,842 (March 27, 2007)

    Google Scholar 

  43. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X. Feng Zhang, R.A. Huggins and Y. Cui, Nat. Nanotechnol. 3, 31 (2008)

    Article  Google Scholar 

  44. Y. Piffard, F. Leroux, D. Guyomard, J.-L. Mansot and M. Tournoux, J. Power Sources 68, 698 (1997)

    Article  Google Scholar 

  45. M. Nishijima, T. Kagohashi, N. Imanishi, Y. Takeda, O. Yamamoto and S. Kondo, Solid State Ionics 83, 107 (1996)

    Article  Google Scholar 

  46. T. Shodai, S. Okada, S-i. Tobishima, and J-i. Yamaki, Solid State Ionics 86–88, 785 (1996)

    Article  Google Scholar 

  47. M. Nishijima, T. Kagohashi, Y. Takeda, N. Imanishi and O. C, in 8th International Meeting on Lithium Batteries, (1996), p. 402

    Google Scholar 

  48. T. Shodai, S. Okada, S. Tobishima and J. Yamaki, in 8th International Meeting on Lithium Batteries, (1996), p. 404

    Google Scholar 

  49. P. Limthongkul, PhD Thesis, Mass. Inst. of Tech. (2002)

    Google Scholar 

  50. B. Klausnitzer, PhD Thesis, University of Ulm (2000)

    Google Scholar 

  51. A. Netz, PhD Thesis, University of Kiel (2001)

    Google Scholar 

  52. A. Netz, R.A. Huggins and W. Weppner, Presented at 11th International Meeting on Lithium Batteries, (2002). Abstract No. 47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huggins, R.A. (2010). Negative Electrodes in Lithium Systems. In: Energy Storage. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1024-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1024-0_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1023-3

  • Online ISBN: 978-1-4419-1024-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics