Skip to main content

Elastic Grid-Based Multi-Fovea Algorithm for Real-Time Object-Motion Detection in Airborne Surveillance

  • Chapter
  • First Online:
Cellular Nanoscale Sensory Wave Computing

Abstract

In this chapter, a generic multi-fovea video processing architecture is presented, which supports a broad class of algorithms designed for real-time motion detection in moving platform surveillance. The various processing stages of these algorithms can be decomposed into three classes: computationally expensive calculations can be focused onto multiple foveal regions that are selected by a preprocessing step running on a highly parallel topological array and leaving only the nontopological (typically vector-matrix) computations to be executed on serial processing elements. The multi-fovea framework used in this chapter is a generalized hardware architecture enabling an efficient partitioning and mapping of different algorithms with enough flexibility to achieve good compromise in the design tradeoff between computational complexity versus output quality. We introduce and compare several variants of four different classes of state-of-the-art algorithms in the field of independent motion analysis and detection. On the basis of the analysis, we propose a new algorithm called the Elastic Grid Multi-Fovea Detector characterized by moderate hardware complexity while maintaining competitive detection quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adiv, Gilad. 1985. Determining three-dimensional motion and structure from optical flow generated by several moving objects. Pattern Analysis and Machine Intelligence, IEEE Transactions, PAMI-7, no. 4: 384–401. doi:10.1109/TPAMI.1985.4767678.

    Article  Google Scholar 

  • Ali, Saad, and Mubarak Shah. 2006. COCOA: tracking in aerial imagery. In Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications III, 6209:62090D-6. Orlando (Kissimmee), FL, USA: SPIE, May 5. http://link.aip.org/link/?PSI/6209/62090D/1

  • Argyros, A.A., M.I.A. Lourakis, P.E. Trahanias, and S.C. Orphanoudakis. 1996. Qualitative detection of 3D motion discontinuities. vol. 3, no. 3:1630–1637. doi:10.1109/IROS.1996.569030.

    Google Scholar 

  • Barron, J.L., D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt. 1992. Performance of optical flow techniques. In Computer Vision and Pattern Recognition, 1992. Proceedings CVPR ‘92., 1992 IEEE Computer Society Conference, 236–242. doi:10.1109/CVPR.1992.223269.

    Google Scholar 

  • Black, R.J., and A. Jepson. 1994. Estimating multiple independent motions in segmented images using parametric models with local deformations. 220–227. doi:10.1109/MNRAO. 1994.346232.

    Google Scholar 

  • Brown, M., and D.G. Lowe. 2003. Recognising Panoramas. In Proceedings of the Ninth IEEE International Conference on Computer Vision, IEEE Computer Society. vol. 2, 1218. http://portal.acm.org/citation.cfm?id~=~946247.946772.

  • Fejes, Sandor, and Larry S. Davis. 1999. Detection of independent motion using directional motion estimation. Computer Vision and Image Understanding, 74, no. 2 (May 1): 101–120. doi:10.1006/cviu.1999.0751.

    Google Scholar 

  • Fischler, Martin A., and Robert C. Bolles. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24, no. 6: 381–395. doi:10.1145/358669.358692.

    Google Scholar 

  • Harris, C., and Stephens, M. 1988. A combined corner and edge detector. In Proceedings Fourth Alvey Vision Conference, 147–151. Manchester, UK.

    Google Scholar 

  • Hartley, Richard, and Andrew Zisserman. 2000. Multiple view geometry in computer vision. Cambridge University Press. http://books.google.com/books?hl=en&lr=&id=si 3R3Pfa98QC&oi=fnd&pg=PR11&dq=multi+view+geometry&ots=aPo2ktefaM&sig=bIygqB VoMrHq6SnZtgWjrrmnwZ0

  • Hsieh, J.W. 2004. Fast stitching algorithm for moving object detection and mosaic construction. Image and Vision Computing, 22, no. 4: 291–306.

    Article  Google Scholar 

  • Irani, M., and P. Anandan. 1998. A unified approach to moving object detection in 2D and 3D scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions, 20, no. 6: 577–589. doi:10.1109/34.683770.

    Article  Google Scholar 

  • Jianbo Shi, and C. Tomasi. 1994. Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR ‘94., 1994 IEEE Computer Society Conference, 593–600. doi:10.1109/CVPR.1994.323794.

    Google Scholar 

  • Kaaniche, K., B. Champion, C. Pegard, and P. Vasseur. 2005. A Vision Algorithm for Dynamic Detection of Moving Vehicles with a UAV. 1878–1883.

    Google Scholar 

  • Kolmogorov, Vladimir, and Ramin Zabih. 2002. Multi-camera Scene Reconstruction via Graph Cuts. In Proceedings of the 7th European Conference on Computer Vision-Part III, 82–96. Springer-Verlag. http://portal.acm.org/citation.cfm?id=756415

  • Kovesi, P.D. MATLAB and Octave Functions for Computer Vision and Image Processing. School of Computer Science and Software Engineering, The University of Western Australia. http://www.csse.uwa.edu.au/$\sim$pk/research/matlabfns/

  • Kumar, R., H. Sawhney, S. Samarasekera, S. Hsu, Hai Tao, Yanlin Guo, K. Hanna, et al. 2001. Aerial video surveillance and exploitation. Proceedings of the IEEE, 89, no. 10: 1518–1539.

    Google Scholar 

  • Lourakis, Manolis I. A., Antonis A. Argyros, and Stelios C. Orphanoudakis. 1998. Independent 3D Motion Detection Using Residual Parallax Normal Flow Fields. 1012–1017. http://citeseer.ist.psu.edu/102877.html

  • Lowe, David G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, no. 2 (November 1): 91–110. doi:10.1023/B:VISI. 0000029664.99615.94.

    Google Scholar 

  • Lucas, B.D, and T. Kanade. 1981. An Iterative image registration technique with an application to stereo vision. In International Joint Conference on Artificial Intelligence, 674–679. Vancouver. http://citeseer.ist.psu.edu/lucas81iterative.html

  • Mikolajczyk, Krystian, and Cordelia Schmid. 2005. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, no. 10: 1615–1630.

    Article  Google Scholar 

  • Molinier, Matthieu, Tuomas Häme, and Heikki Ahola. 2005. 3D-connected components analysis for traffic monitoring in image sequences acquired from a helicopter. In Image Analysis, 141–150. http://dx.doi.org/10.1007/11499145_16

  • Morse, B.S., D. Gerhardt, C. Engh, M.A. Goodrich, N. Rasmussen, D. Thornton, and D. Eggett. 2008. Application and evaluation of spatiotemporal enhancement of live aerial video using temporally local mosaics. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1–8.

    Google Scholar 

  • Pless, R., T. Brodsky, and Y. Aloimonos. 2000. Detecting independent motion: the statistics of temporal continuity. Pattern Analysis and Machine Intelligence, IEEE Transactions, 22, no. 8: 768–773.

    Article  Google Scholar 

  • Rekeczky, C., I. Szatmari, D. Balya, G. Timar, and A. Zarandy. 2004. Cellular multiadaptive analogic architecture: a computational framework for UAV applications. Circuits and Systems I: Regular Papers, IEEE Transactions on [Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions] 51, no. 5: 864–884. doi:10.1109/TCSI.2004.827629.

    Google Scholar 

  • Sawhney, H.S., Y. Guo, and R. Kumar. 2000. Independent motion detection in 3D scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions, 22, no. 10: 1191–1199.

    Article  Google Scholar 

  • Sawhney, H.S., and R. Kumar. 1999. True multi-image alignment and its application to mosaicing and lens distortion correction. Pattern Analysis and Machine Intelligence, IEEE Transactions, 21, no. 3: 235–243. doi:10.1109/34.754589.

    Article  Google Scholar 

  • Shan Zhu, and Kai-Kuang Ma. 2000. A new diamond search algorithm for fast block-matching motion estimation. Image Processing, IEEE Transactions, 9, no. 2: 287–290. doi:10.1109/83.821744.

    Google Scholar 

  • Soos, B.G., and C. Rekeczky. 2007. Elastic grid based analysis of motion field for object-motion detection in airborne video flows. In Circuits and Systems, ISCAS 2007. IEEE International Symposium, 617–620. doi:10.1109/ISCAS.2007.378813.

    Google Scholar 

  • Soos, B.G., V. Szabo, and C. Rekeczky. 2009. Multi-Fovea Architecture and Algorithms for Real-Time Object-Motion Detection in Airborne Surveillance: Comparative Analysis (Technical Report). Budapest, Hungary: Pazmány Peter Catholic University.

    Google Scholar 

  • Szeliski, Richard. 2006. Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph. Vis., 2, no. 1: 1–104.

    Article  Google Scholar 

  • Torr, PHS. 2002. A Structure and Motion Toolkit in Matlab: Interactive adventures in S and M. Microsoft Research.

    Google Scholar 

  • Weiming Hu, Tieniu Tan, Liang Wang, and S. Maybank. 2004. A survey on visual surveillance of object motion and behaviors. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions, 34, no. 3: 334–352.

    Google Scholar 

  • Yilmaz, Alper, Omar Javed, and Mubarak Shah. 2006. Object tracking: A survey. ACM Comput. Surv., 38, no. 4: 13. doi:10.1145/1177352.1177355.

    Google Scholar 

  • Zhang, Zhengyou. 1998. Determining the epipolar geometry and its uncertainty: A review. Int. J. Comput. Vision, 27, no. 2: 161–195.

    Article  Google Scholar 

  • Zhigang Zhu, Hao Tang, G. Wolberg, and J.R. Layne. 2005. Content-based 3D mosaic representation for video of dynamic 3D scenes. In Applied Imagery and Pattern Recognition Workshop, 2005. Proceedings. 34th, 6 pp. 203. doi:10.1109/AIPR.2005.25.

    Google Scholar 

  • Zitova, Barbara, and Jan Flusser. 2003. Image registration methods: a survey. Image and Vision Computing, 21, no. 11 (October): 977–1000. doi:10.1016/S0262–8856(03)00137–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balazs Gergely Soos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Soos, B.G., Szabo, V., Rekeczky, C. (2010). Elastic Grid-Based Multi-Fovea Algorithm for Real-Time Object-Motion Detection in Airborne Surveillance. In: Baatar, C., Porod, W., Roska, T. (eds) Cellular Nanoscale Sensory Wave Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1011-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1011-0_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1010-3

  • Online ISBN: 978-1-4419-1011-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics