Skip to main content

Abstract

Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence, reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amsden B (1998) Solute diffusion in hydrogels. An examination of the retardation effect. Polym Gels Networks 31:13–43

    Article  Google Scholar 

  • Bhandari BR, Howes T (1999) Implication of glass transition for the drying and stability of dried foods. J Food Eng 40:71–79

    Article  Google Scholar 

  • Busignies V, Leclerc B, Porion P, Evesque P, Couarraze G, Tchoreloff P (2006) Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography. Eur J Pharm Biopharm 64:38–50

    Article  CAS  Google Scholar 

  • Carson JW, Wilms H (2006) Development of an international standard for shear testing. Powder Technol 167:1–9

    Article  CAS  Google Scholar 

  • Chiu GNC, Abraham SA, Ickenstein LM, Ng R, Karlsson G, Edwards K, Wasan EK, Bally MB (2005) Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Release 104:271–288

    CAS  Google Scholar 

  • Chung JT, Vlugt-Wensink KDF, Hennink WE, Zhang Z (2005) Effect of polymerization conditions on the network properties of dex-HEMA microspheres and macro-hydrogels. Int J Pharm 288:51–61

    Article  CAS  Google Scholar 

  • De Roos KB (2000) Physicalchemical models of flavor release from foods. In: Roberts DD, Taylor AJ (eds) Flavor release, ACS Symposium Series 763. American Chemical Society, Washington, DC

    Google Scholar 

  • Dinsmore AD, Hsu MF, Nikolaides MG, Marques M, Bausch AR, Weitz DA (2002) Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  CAS  Google Scholar 

  • Dziezak JD (1988) Microencapsulation and encapsulated ingredients. Food Technol 42:136–151

    CAS  Google Scholar 

  • Edwards-Levy F, Levy M-C (1999) Serum albumin-alginate coated beads: mechanical properties and stability. Biomaterials 20:2069–2084

    Article  CAS  Google Scholar 

  • Farber L, Tardos G, Michaels JN (2003) Use of X-ray tomography to study the porosity and morphology of granules. Powder Technol 132:57–63

    CAS  Google Scholar 

  • Fatin-Rouge N, Milon N, Buffle J, Goulet RR, Tessier A (2003) Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J Phys Chem B 107:12126–12137

    Article  CAS  Google Scholar 

  • Fitzpatrick JJ, Barringer SA, Iqbal T (2004a) Flow property measurement of food powders and sensitivity of Jenike’s hopper design methodology to the measured values. J Food Eng 61:399–405

    Article  Google Scholar 

  • Fitzpatrick JJ, Iqbal T, Delaney C, Twomey T, Keogh MK (2004b) Effect of powder properties and storage conditions on the flowability of milk powders with different fat contents. J Food Eng 64:435–444

    Article  Google Scholar 

  • Foster DS, Clifford LH (1966) Encyclopedia of industrial chemical analysis. Interscience, New York

    Google Scholar 

  • Fujimoto K, Toyoda T, Fukui Y (2007) Preparation of bionanocapsules by the layer-by-layer deposition of polypeptides onto a liposome. Macromolecules 40:5122–5128

    Article  CAS  Google Scholar 

  • Grigorescu G, Rosinski S, Lewinska D, Ritzén LG, Viernstein H, Teunou E, Poncelet D, Zhang Z, Fan X, Serp D, Marison I, Hunkeler D (2002) Characterization of microcapsules: recommended methods based on round-robin testing. J Microencapsul 19:641–659

    Article  Google Scholar 

  • Guichard E (2000) Interaction of food matrix with small ligands influencing flavour and texture – foreword. Food Chem 71:299–300

    Article  CAS  Google Scholar 

  • Hu Y, Zhang J, Sato H, Noda I, Ozaki Y (2007) Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer 48:4777–4785

    Article  CAS  Google Scholar 

  • Huang G, Gao J, Hu ZB, John JVS, Ponder BC, Moro D (2004) Controlled drug release from hydrogel nanoparticle networks. J Control Release 94:303–311

    Article  CAS  Google Scholar 

  • Jenike AW (1964) Storage and flow of solids. Bulletin 123, Engineering Experiment Station, University of Utah, USA

    Google Scholar 

  • Johnson EM, Berk DA, Jain RK, Dean WM (1996) Hindered diffusion in argarose gels: test of effective medium model. Biophys J 70:1017–1026

    Article  CAS  Google Scholar 

  • Jonathan AI (2003) NMR spectroscopy in inorganic chemistry. Oxford University Press, New York

    Google Scholar 

  • Karel M, Langer R (1988) Controlled release of food-additives. ACS Symp Ser Am Chem Soc 370:177–191

    Article  CAS  Google Scholar 

  • Kosto KB, Deen WM (2005) Hindered convection of macromolecules in hydrogels. Biophys J 88:277–286

    Article  CAS  Google Scholar 

  • Labhasetwar VD, Dorle AK (1991) A study on the zeta potential of microcapsules during aging. J Microencapsul 8:83–85

    Article  CAS  Google Scholar 

  • Lamprecht A, Schafer UF, Lehr CM (2000) Characterization of microcapsules by confocal laser scanning microscopy: structure, capsule wall composition and encapsulation rate. Eur J Pharm 49:1–9

    CAS  Google Scholar 

  • Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 49:2990–3006

    Article  CAS  Google Scholar 

  • Lardner TJ, Pujara P (1980) Compression of spherical cells. Mechanics Today 5:161–176

    Google Scholar 

  • Law NGD (2007) Stabilisation and targeted delivery of enzyme nattokinase by encapsulation. Doctoral Dissertation, The University of Birmingham, UK

    Google Scholar 

  • Le Meste M, Champion D, Roudaut G, Blond G, Simatos D (2002) Glass transition and food technology: a critical appraisal. J Food Sci 67:2444–2458

    Article  Google Scholar 

  • Leblond FA, Tessier J, Halle JP (1996) Quantitative method for the evaluation of biomicrocapsule resistance to mechanical stress. Biomaterials 17:2097–2102

    Article  CAS  Google Scholar 

  • Legrand P, Barratt G, Mosqueira V, Fessi H, Devissaguet JP (1999) Polymeric nanocapsules as drug delivery systems. A review. STP Pharma Sci 9:411–418

    CAS  Google Scholar 

  • Li MZ, Wilkinson D, Patchigolla K (2005) Determination of non-spherical particle size distribution from chord length measurements. Part 2: Experimental validation. Chem Eng Sci 60:4992–5003

    Article  CAS  Google Scholar 

  • Lian G (2000) Modeling flavor release from oil-containing gel particles. In: Roberts DD, Taylor AJ (eds) Flavor release. ACS Symposium Series 763. American Chemical Society, Washington, DC, pp 201–211

    Google Scholar 

  • Lian G, Astill C (2002) Computer simulation of the hydrodynamics of teabag infusion. Food Bioproducts Processing 80:155–162

    Article  Google Scholar 

  • Lian GP, Malone M, Homan JE, Norton IT (2004) A mathematical model of volatile release in mouth from the dispersion of gelled emulsion particles. J Control Release 98:139–155

    Article  CAS  Google Scholar 

  • Lin CL, Miller JD (2004) Pore structure analysis of particle beds for fluid transport simulation during filtration. Int J Mineral Process 73:281–294

    Article  CAS  Google Scholar 

  • Liu KK, Williams DR, Briscoe BJ (1996) Compressive deformation of a single microcapsule. Phys Rev E 54:6673–6680

    Article  CAS  Google Scholar 

  • Liu T, Donald AM, Zhang Z (2005) Novel manipulation in environmental SEM for measuring the mechanical properties of single nano-particles. Mater Sci Technol 21:289–294

    Article  Google Scholar 

  • Lu GZ, Thompson FG, Gray MR (1992) Physical modelling of animal cell damage by hydrodynamic forces in suspension cultures. Biotechnology and Bioengineering 40:1277–1281

    Article  CAS  Google Scholar 

  • Lulevich VV, Radtchenko IL, Sukhorukov GB, Vinogradova OI (2003) Deformation properties of nonadhesive polyelectrolyte. J Phys Chem B 107:2735–2740

    Article  CAS  Google Scholar 

  • Martinsen A, Skjakbraek G, Smidsrød O (1989) Alginate as immobilization material. 1. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33:79–89

    Article  CAS  Google Scholar 

  • Mathiowitz E (1999) Encyclopedia of controlled drug delivery. Wiley, New York

    Google Scholar 

  • Mitragotri S (2002) A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on scaled particle theory. J Pharm Sci 91:744–752

    Article  CAS  Google Scholar 

  • Montasser I, Briancon S, Fessi H (2007) The effect of monomers on the formulation of polymeric nanocapsules based on polyureas and polyamides. Int J Pharm 335:176–179

    Article  CAS  Google Scholar 

  • Montes de Oca H, Ward IM, Klein PG, Ries ME, Rose J, Farrar D (2004) Solid state nuclear magnetic resonance study of highly oriented poly(glycolic acid). Polymer 45:7261–7272

    Article  CAS  Google Scholar 

  • O’Hagan P, Hasapidis K, Coder A, Helsing H, Pokrajac G (2005) Particle size analysis of food powders. In: Onwulata C (ed) Encapsulated and powdered foods. CRC, Boca Raton, FL, pp 215–245

    Google Scholar 

  • Odijk T (2000) Depletion theory of protein transport in semi-dilute polymer solutions. Biophys J 79:2314–2321

    Article  CAS  Google Scholar 

  • Ohtsubo T, Tsuda S, Tsuji K (1991) A study of the physical strength of fenitrothion microcapsules. Polymer 32:2395–2399

    Article  CAS  Google Scholar 

  • Overbosch P, Agterhof WGM, Haring PMG (1991) Flavour release in the mouth. Food Reviews International 7(2):137–184

    Article  CAS  Google Scholar 

  • Peirone MA, Delaney K, Kwiecin J, Fletch A, Chang PL (1998) Delivery of recombinant gene product to canines with nonautologous microencapsulated cells. Hum Gene Ther 9:195–206

    Article  CAS  Google Scholar 

  • Phillips RJ (2000) Hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. Biophys J 79:3350–3353

    Article  CAS  Google Scholar 

  • Phillips RJ, Dean WM, Brady JF (1989) Hindered transport in fibrous memberanes and gels. AIChE J 35:1761–1769

    Article  CAS  Google Scholar 

  • Pluen A, Netti PA, Jain RK, Berk DA (1999) Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys J 77:542–552

    Article  CAS  Google Scholar 

  • Pothakamury UR, Barbosa-Canovas GV (1995) Fundamental aspects of controlled release in foods. Trends Food Sci Technol 6:397–406

    Article  CAS  Google Scholar 

  • Rao M, Rizvi SSH (1994) Engineering properties of foods. Marcel Dekker, New York

    Google Scholar 

  • Rattanasak U, Kendall K (2005) Pore structure of cement/pozzolan composites by X-ray microtomography. Cement Concrete Res 35:637–640

    Article  CAS  Google Scholar 

  • Ren Y, Donald AM, Zhang Z (2007) Investigation of the radiation damage to microcapsules in an Environmental SEM. Mater Sci Technol 23:857–864

    Article  CAS  Google Scholar 

  • Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Laupretre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516

    Article  CAS  Google Scholar 

  • Roueche E, Serris E, Thomas G, Perier-Camby L (2006) Influence of temperature on the compaction of an organic powder and the mechanical strength of tablets. Powder Technol 162:138–144

    Article  CAS  Google Scholar 

  • Sangster J (1997) Octanol-water partition coefficients: fundamentals and physical chemistry. Wiley Series in Solution Chemistry, New York

    Google Scholar 

  • Santus G, Baker RW (1995) Osmotic drug-delivery. A review of the patent literature. J Control Release 35:1–12

    Article  CAS  Google Scholar 

  • Sasaki T, Kawagoe S, Mitsuya H, Irie S, Sakurai K (2006) Glass transition of crosslinked polystyrene shells formed on the surface of calcium carbonate whisker. J Polym Sci B Polym Phys 44:2475–2485

    Article  CAS  Google Scholar 

  • Schilling PJ, Karedla BR, Tatiparthi AK, Verges MA, Herrington PD (2005) X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Compos Sci Technol 65:2071–2078

    Article  CAS  Google Scholar 

  • Schuldt U, Hunkeler D (2000) Characterization methods for microcapsules. Minerva Biotechnologica 12:249–264

    Google Scholar 

  • Schulze D (1996a) Measuring powder flowability: a comparison of test methods. Part I. Powder Bulk Eng 10:17–28

    Google Scholar 

  • Schulze D (1996b) Measuring powder flowability: a comparison of test methods. Part II. Powder Bulk Eng 10:45–61

    Google Scholar 

  • Seamus PJH (2003) Analytical chemistry. Oxford University Press, New York

    Google Scholar 

  • Shiu C, Zhang Z, Thomas CR (1999) A novel technique for the study of bacterial cell mechanical properties. Biotechnol Tech 13:707–713

    Article  CAS  Google Scholar 

  • Shu B, Yu W, Zhao Y, Liu X (2006) Study on microencapsulation of lycopene by spray-drying. J Food Eng 76:664–669

    Article  CAS  Google Scholar 

  • Shukla A, Srivastava AK (2004) Synthesis and characterization of functional copolymer of linalool and vinyl acetate: a kinetic study. J Appl Polym Sci 92:1134–1143

    Article  CAS  Google Scholar 

  • Stenekes RJH, De Smedt SC, Demeester J, Sun GZ, Zhang ZB, Hennink WE (2000) Pore sizes in hydrated dextran microspheres. Biomacromolecules 1:696–703

    Article  CAS  Google Scholar 

  • Stock SR (1999) X-ray microtomography of materials. Int Mater Rev 44:141–164

    Article  CAS  Google Scholar 

  • Strand BL, Morch YA, Espevik T, Skjak-Braek G (2003) Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnol Bioeng 82:386–394

    Article  CAS  Google Scholar 

  • Sun G, Zhang Z (2001) Mechanical properties of melamine-formaldehyde microcapsules. J Microencapsul 18:593–602

    Article  CAS  Google Scholar 

  • Sun G, Zhang Z (2002) Mechanical strength of microcapsules made of different wall materials. Int J Pharm 242:307–311

    Article  CAS  Google Scholar 

  • Taylor AJ (1998) Physical chemistry of flavour. Int J Food Sci Technol 33:53–62

    Article  CAS  Google Scholar 

  • Teunou E, Fitzpatrick JJ (1999) Effect of relative humidity and temperature on food powder flowability. J Food Eng 42:109–116

    Article  Google Scholar 

  • Van Raamsdonk JM, Chang PL (2001) Osmotic pressure test: a simple, quantitative method to assess the mechanical stability of alginate microcapsules. J Biomed Mater Res 54:264–271

    Article  Google Scholar 

  • Verma RK, Krishna DM, Garg S (2002) Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release 79:7–27

    Article  CAS  Google Scholar 

  • Wang C, Cowen C, Zhang Z, Thomas CR (2005) High-speed compression of single alginate microspheres. Chem Eng Sci 60:6649–6657

    Article  CAS  Google Scholar 

  • Weiss G, Knoch A, Laicher A, Stanislaus F, Daniels R (1995) Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP). II. Microencapsulation of ibuprofen. Int J Pharm 124:97–105

    Article  CAS  Google Scholar 

  • Westrin BA, Axelsson A, Zacchi G (1994) Diffusion measurements in gels. J Control Release 30:189–199

    Article  CAS  Google Scholar 

  • Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250:215–226

    Article  CAS  Google Scholar 

  • Yadav SK, Khilar KC, Suresh AK (1997) Release rates from semi-crystalline polymer microcapsules formed by interfacial polycondensation. J Memb Sci 125:213–218

    Article  CAS  Google Scholar 

  • Yan NX, Zhang MZ, Ni PH (1992) Size distribution and zeta potential of polyamide microcapsules. J Memb Sci 72:163–169

    Article  CAS  Google Scholar 

  • Yan-yu X, Yun-mei S, Zhi-peng C, Qi-neng P (2006) Preparation of silymarin proliposome: a new way to increase oral bioavailability of silymarin in beagle dogs. Int J Pharm 319:162–168

    Article  Google Scholar 

  • Yeo Y, Bellas E, Firestone W, Langer R, Kohane DS (2005) Complex coacervates for thermally sensitive controlled release of flavor compounds. J Agric Food Chem 53:7518–7525

    Article  CAS  Google Scholar 

  • Yoshioka Y, Asao K, Yamamoto K, Tachi H (2007) New method for fabricating aromatic polyamide particles with a narrow particle size distribution. Macromol Reaction Eng 1:222–228

    Article  CAS  Google Scholar 

  • Zhang YL, Chu CC (2002) Biodegradable dextran-polylactide hydrogel networks: their swelling, morphology and the controlled release of indomethacin. J Biomed Mater Res 59:318–328

    Article  CAS  Google Scholar 

  • Zhang Z, Ferenczi MA, Lush AC, Thomas CR (1991) A novel micromanipulation technique for measuring the bursting strength of single mammalian-cells. Appl Microbiol Biotechnol 36:208–210

    Article  CAS  Google Scholar 

  • Zhang Z, Ferenczi MA, Thomas CR (1992) A micromanipulation technique with theoretical cell model for determining mechanical properties of single mammalian cells. Chem Eng Sci 47:1347–1354

    Article  Google Scholar 

  • Zhang Z, Saunders R, Thomas CR (1999) Mechanical strength of single microcapsules determined by a novel micromanipulation technique. J Microencapsul 16:117–124

    Article  CAS  Google Scholar 

  • Zhao L, Zhang Z (2004) Mechanical characterization of biocompatible microspheres and microcapsules by direct compression. Artif Cells Blood Substit Immobil Biotechnol 32:25–40

    Article  Google Scholar 

  • Zou Y, Brusewitz GH (2002) Flowability of uncompacted marigold powder affected by moisture content. J Food Eng 55:165–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, Z., Law, D., Lian, G. (2010). Characterization Methods of Encapsulates. In: Zuidam, N., Nedovic, V. (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1008-0_4

Download citation

Publish with us

Policies and ethics