Skip to main content

Bioprocess Intensification of Beer Fermentation Using Immobilised Cells

  • Chapter
  • First Online:
Encapsulation Technologies for Active Food Ingredients and Food Processing

Abstract

Beer production with immobilised yeast has been the subject of research for approximately 30 years but has so far found limited application in the brewing industry, due to engineering problems, unrealised cost advantages, microbial contaminations and an unbalanced beer flavor (Linko et al. 1998; Brányik et al. 2005; Willaert and Nedović 2006). The ultimate aim of this research is the production of beer of desired quality within 1–3 days. Traditional beer fermentation systems use freely suspended yeast cells to ferment wort in an unstirred batch reactor. The primary fermentation takes approximately 7 days with a subsequent secondary fermentation (maturation) of several weeks. A batch culture system employing immobilization could benefit from an increased rate of fermentation. However, it appears that in terms of increasing productivity, a continuous fermentation system with immobilization would be the best method (Verbelen et al. 2006). An important issue of the research area is whether beer can be produced by immobilised yeast in continuous culture with the same characteristic as the traditional method.

In beer production, as opposed to a process such as bio-ethanol production, the goal is to achieve a particular balance of different secondary metabolites rather than the attainment of high yields of one product. Any alterations of the fermentation procedure can thus have serious implications on the flavor profile. At present, only beer maturation and alcohol-free beer production are obtained by means of commercial-scale immobilised yeast reactors, because in these processes no real yeast growth is required. Immobilised cell physiology control and fine-tuning of the flavor compounds formation during long-term fermentation processes remain the major challenges for successful application of immobilised cell technology on an industrial scale. The key factors for the implementation of this technology on an industrial level are carrier materials, immobilization technology and bioreactor design.

The purpose of this chapter is to summarise and discuss the main cell immobilization methods, process requirements, available carrier materials and bioreactor designs aimed for better yeast physiology control and fine-tuning of the flavor formation during beer fermentation process. Further, it will provide an overview on the latest important breakthroughs, accomplished in understanding of the effects of immobilization on yeast physiology, metabolism and fermentation behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aivasidis A (1996) Another look at immobilized yeast systems. Cerevisia 21(1):27–32

    CAS  Google Scholar 

  • Aivasidis A, Wandrey C, Eils H-G, Katzke M (1991) Continuous fermentation of alcohol-free beer with immobilized yeast cells in fluidized bed reactors. In: Proceedings European brewery convention congress, pp 569–576

    Google Scholar 

  • Andersen K, Bergin J, Ranta B, Viljava T (1999) Main fermentation of beer. In: Proceedings of the 27th European brewery convention congress, pp 771–778

    Google Scholar 

  • Andries M, Van Beveren PC, Goffin O, Masschelein CA (1996) Design and application of an immobilized loop bioreactor for continuous beer fermentation. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: Basics and applications. Elsevier, Amsterdam, pp 672–678

    Google Scholar 

  • Baillie GS, Douglas LJ (1999) Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48:671–679

    Article  CAS  Google Scholar 

  • Bamforth CW, Kanauchi M (2004) Enzymology of vicinal diketone reduction in brewers’ yeast. J Inst Brew 110(2):83–93

    CAS  Google Scholar 

  • Bardi E, Koutinas AA, Kanellaki M (1997) Room and low temperature brewing with yeast immobilized on gluten pellets. Process Biochem 32:691–696

    Article  CAS  Google Scholar 

  • Baron GV, Willaert RG (2004) Cell immobilization in pre-formed porous matrices. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilization biotechnology. Kluwer Academic Plubishers, The Netherlands, pp 229–244

    Google Scholar 

  • Bezbradica D, Obradovic B, Leskosek-Cukalovic I, Bugarski B, Nedovic V (2007) Immobilization of yeast cells in PVA particles for beer fermentation. Process Biochem 42(9):1348–1351

    Article  CAS  Google Scholar 

  • Bidard F, Blondin B, Dequin S, Vezinhet F, Barre P (1994) Cloning and analysis of a FLO5 flocculation gene from Saccharomyces cerevisiae yeast. Curr Gentetics 25:196–201

    Article  CAS  Google Scholar 

  • Bidard F, Bony M, Blondin B, Dequin S, Barre P (1995) The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein. Yeast 11:809–822

    Article  CAS  Google Scholar 

  • Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localisation and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936

    CAS  Google Scholar 

  • Brányik T, Vicente AA, Machado Cruz JM, Teixeira JA (2001) Spent grains – a new support for brewing yeast immobilization. Biotechnol Lett 23:1073–1078

    Article  Google Scholar 

  • Brányik T, Vicente A, Cruz JM, Teixeira J (2002) Continuous primary beer fermentation with brewing yeast immobilized on spent grains. J Inst Brew 108:410–415

    Google Scholar 

  • Brányik T, Vicente AA, Cruz JMM, Texeira JA (2004a) Continuous primary fermentation of beer with yeast immobilized on spent grains – the effect of operational conditions. J Am Soc Brew Chem 62:29–34

    Google Scholar 

  • Brányik T, Vicente AA, Kuncová G, Podrasky O, Dostálek P, Teixeira J (2004b) Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation. Biotechnol Prog 20:1733–1740

    Article  CAS  Google Scholar 

  • Brányik T, Vicente AA, Dostálek P, Teixeira JA (2005) Continuous beer fermentation using immobilized yeast cell bioreactor systems. Biotechnol Prog 21(3):653–663

    Article  CAS  Google Scholar 

  • Brányik T, Silva DP, Vicente AA, Lehnert R, Almeida e Silva JB, Dostálek P, Teixeira JA (2006a) Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J Ind Microbiol Biotechnol 33:1010–1018

    Article  CAS  Google Scholar 

  • Brányik T, Vicente AA, Dostálek P, Teixeira J (2006b) Flavor formation in continuous fermentations. Proceedings Chair De Clerck, Leuven, p 15p

    Google Scholar 

  • Caro LH, Tettelin H, Vossen JH, Ram AF, Van den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

    Article  CAS  Google Scholar 

  • Chen EC-H (1978) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. J Am Soc Brew Chem 36(1):39–43

    CAS  Google Scholar 

  • Collin S, Montesinos M, Meersman E, Swinkels W, Dufour JP (1991) Yeast dehydrogenase activities in relation to carbonyl compounds removal from wort and beer. In: Proceedings European brewery convention congress, pp 409–416

    Google Scholar 

  • Cop J, Dyon D, Iserentant D, Masschelein CA (1989) Reactor design optimization with a view on the improvement of amino acid utilization and flavor development of calcium-alginate entrapped brewing yeast fermentations. In: Proceedings of the 22nd European brewery convention, Zurich, pp 315–322

    Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285(5427):578–582

    Article  CAS  Google Scholar 

  • Coutts MW (1957) A continuous process for the production of beer. UK Patent 872,391400

    Google Scholar 

  • Cross PA, Mavituna F (1987) Yeast retention fermentors for beer production. In: Proceedings of the 4th European congress on biotechnology, Amsterdam, pp 199–200

    Google Scholar 

  • Curin J, Pardonova M, Sedova H, Kahler M (1987) Beer production with immobilized yeast. Proceedings of the 21th EBC congress, pp 433–440

    Google Scholar 

  • De Groot PWJ, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796

    Article  CAS  Google Scholar 

  • Decamps C, Norton S, Poncelet D, Neufeld RJ (2004) Continuous pilot plant-scale immobilization of yeast in κ-carrageenan gel beads. AIChE J 50:1599–1605

    Article  CAS  Google Scholar 

  • Depraetere SA, Winderickx J, Delvaux FR (2003) Evaluation of the oxygen requirement of lager and ale yeast strains by preoxygenation. Master Brewers Assoc Americas Tech Quarterly 40(4):283–289

    CAS  Google Scholar 

  • Doran PM, Bailey JE (1986) Effects of immobilization on growth, fermentation properties, and molecular composition of Saccharomyces cerevisiae attached to gelatin. Biotechnol Bioeng 28:73–87

    Article  CAS  Google Scholar 

  • Dufour JP, Devreux A (1986) The use of amino acids analysis as a tool to control malting and brewing processes. EBC Symposium on Wort Production, Monograph XI. Nürnberg, pp. 227–248

    Google Scholar 

  • Dunbar J, Campbell SI, Banks DJ, Warren DR (1988) Metabolic aspects of a commercial continuous fermentation system. In: Proceedings of the 20th convention of the institute of brewing (Asia and New Zealand Section), pp 151–158

    Google Scholar 

  • Frieman MB, Cormack BP (2003) The omega-site sequence of glycosylphosphatidyl-inositol-anchored proteins in Saccharomyces cerevisiae can determine distribution between the membrane and the cell wall. Mol Microbiol 50:883–896

    Article  CAS  Google Scholar 

  • Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG, Edwards JE Jr (2002) Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44:61–72

    Article  CAS  Google Scholar 

  • Fukuda K, Yamamoto N, Kiyokawa Y, Yanagiuchi T, Wakai Y, Kitamoto K, Inoue Y, Kimura A (1998) Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevisiae is important for production of isoamyl acetate. Appl Environ Microbiol 64(10):4076–4078

    CAS  Google Scholar 

  • Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 12:162–172

    Article  CAS  Google Scholar 

  • Gaur NK, Klotz SA (1997) Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65:5289–5294

    CAS  Google Scholar 

  • Green CB, Cheng G, Chandra J, Mukherjee P, Ghannoum MA, Hoyer LL (2004) T-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267–275

    Article  CAS  Google Scholar 

  • Guo B, Styles CA, Feng Q, Fink GA (2000) A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proc Natl Acad Sci USA 97:12158–12163

    Article  CAS  Google Scholar 

  • Hammond JRM (1995) Genetically-modified brewing yeast for the 21st century. Progress to date. Yeast 11:1613–1627

    Article  CAS  Google Scholar 

  • Hanneman W (2002) Reducing beer maturation time and retaining quality. Master Brewers Assoc Americas Tech Quarterly 39(3):149–155

    Google Scholar 

  • Hayes AH, Power J, Ryder DS (1991) Immobilized cell technology for brewing: A progress report. Brewers Dig 66(11):28–33

    CAS  Google Scholar 

  • Hegarty PK, Parsons R, Bamforth CW, Molzahn SW (1995) Phenyl ethanol – a factor determining lager character. In: Proceedings of the 25th European brewery convention, pp 515–522

    Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  CAS  Google Scholar 

  • Hoyer LL, Payne TL, Hecht JE (1998) Identification of Candida albicans ALS2 and ALS4 and localization of ALS proteins to the fungal cell surface. J Bacteriol 180:5334–5343

    CAS  Google Scholar 

  • Hsu W-P, Bernstein L (1985) A new type of bioreactor employing immobilized yeast. J Am Soc Brew Chem 43:101–103

    CAS  Google Scholar 

  • Inoue T (1995) Development of a two-stage immobilized yeast fermentation system for continuous beer brewing. In: Proceedings European brewery convention congress, pp 25–36

    Google Scholar 

  • Jin YL, Speers RA (1999) Flocculation of Saccharomyces cerevisiae. Food Res Int 31:421–440

    Article  Google Scholar 

  • Jones M, Pierce JS (1964) Absorption of amino acids from wort by yeasts. J Inst Brew 70:307–315

    CAS  Google Scholar 

  • Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: engineering principles. Chem Eng Sci 40:1321–1353

    Article  CAS  Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    CAS  Google Scholar 

  • Kronlöf J, Linko M (1992) Production of beer using immobilized yeast encoding α-acetolactate decarboxylase. J Inst Brew 98:479–491

    Google Scholar 

  • Kronlöf J, Virkajärvi I (1999) Primary fermentation with immobilized yeast. In: Proceedings European brewery convention congress, pp 761–770

    Google Scholar 

  • Kronlöf J, Härkönen T, Hartwall P, Home S, Linko M (1989) Main fermentation with immobilized yeast. In: Proceedings of the 22nd European brewery convention, Zurich, pp 355–362

    Google Scholar 

  • Kronlöf J, Virkajärvi I, Storgards EL, Londesborough J, Dymond G (2000) Combined primary and secondary fermentation with immobilized yeast. In: World brewing congress 2000 proceedings, Orlando, P-56

    Google Scholar 

  • Landaud S, Latrille E, Corrieu G (2001) Top pressure and temperature control of the fusel alcohol/ester ratio through yeast growth in beer fermentation. J Inst Brew 10(2):107–117

    Google Scholar 

  • Li F, Palecek SP (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryotic Cell 2:1266–1273

    Article  CAS  Google Scholar 

  • Linko M, Kronlöf J (1991) Main fermentation with immobilised yeast. Proceedings of the 23rd european brewery convention, Lisbon, pp 353–360

    Google Scholar 

  • Linko M, Suihko M-L, Kronlöf J, Home S (1993) Use of brewer’s yeast expressing α-acetolactate decarboxylase in conventional and immobilized fermentations. Master Brewers Assoc Americas Tech Quarterly 30:93–97

    CAS  Google Scholar 

  • Linko M, Virkajärvi I, Pohjala N, Lindborg K, Kronlöf J, Pajunen E (1997) Main fermentation with immobilized yeast – a breakthrough? Proceedings of the 26th European brewery convention, Maastricht, pp 385–394

    Google Scholar 

  • Linko M, Haikara A, Ritala A, Penttilä M (1998) Recent advances in the malting and brewing industry. J Biotechnol 65:85–98

    Article  CAS  Google Scholar 

  • Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9:161–171

    CAS  Google Scholar 

  • Lommi H (1990) Immobilized yeast for maturation and alcohol-free beer. Brewing Distilling Int 5:22–23

    Google Scholar 

  • Maeba H, Unemoto S, Sato M, Shinotsuka K (2000) Primary fermenation with immobilized yeast in porous chitosan beads. Pilot scale trial. In: Proceedings 26th convention institute brewing Australia and New Zealand Section, Singapore, pp 82–86

    Google Scholar 

  • Manojlović V, Agouridis N, Kopsahelis N, Kanellaki M, Bugarski B, Nedovic V (2008) Brewing by immobilized freeze dried cells in a novel gas flow bioreactor. Proceedings of the 2008 joint central European congress, 4th central European congress on food, 6th Croatian congress of food technologists, biotechnologists and nutritionists, Cavtat, Croatia, pp 327–334

    Google Scholar 

  • Masschelein CA, Carlier A, Ramos-Jeunehomme C (1985) The effect of immobilization on yeast physiology and beer quality in continuous and discontinuous systems. Proceedings of the 20th European brewery convention, Helsinki, pp 339–346

    Google Scholar 

  • Masschelein CA, Ryder DS, Simon J-P (1994) Immobilized cell technology in beer production. Crit Rev Biotechnol 14:155–177

    Article  CAS  Google Scholar 

  • Mavituna F (2004) Pre-formed carriers for cell immobilization. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilization biotechnology. Kluwer Academic Plubishers, The Netherlands, pp 121–139

    Google Scholar 

  • Meilgaard MC (1975) Flavor chemistry of beer: Part II: flavor threshold of 239 aroma volatiles. MBAA Tech Quarterly 12(3):151–168

    CAS  Google Scholar 

  • Mensour N, Margaritis A, Briens CL, Pilkington H, Russell I (1996) Applications of immobilized yeast cells in the brewing industry. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: Basics and applications. Elsevier, Amsterdam, pp 661–671

    Google Scholar 

  • Mensour N, Margaritis A, Briens CL, Pilkington H, Russell I (1997) New developments in the brewing industry using immobilised yeast cell bioreactor systems. J Inst Brew 103:363–370

    CAS  Google Scholar 

  • Moll M, Durand G, Blachere H (1973). Continuous production of fermented liquids. French Patent 73/23397; US Patent 4009286

    Google Scholar 

  • Narziss L, Hellich P (1971) Ein Beitrag zur wesentlichen Beschleunigung der Gärung und Reifung des Bieres. Brauwelt 111:1491–1500

    CAS  Google Scholar 

  • Navarro JM, Durand G (1977) Modification of yeast metabolism by immobilization onto porous glass. Eur J Appl Microbiol Biotechnol 4:243–254

    CAS  Google Scholar 

  • Nedovic V, Obradovic B, Vunjak-Novakovic G, Leskosek-Cukalovic I (1993) Kinetics of beer fermentation with immobilized yeast cells in an internal-loop air-lift bioreactor. Chem Ind 47:168–172

    CAS  Google Scholar 

  • Nedovic VA, Pesic R, Leskosek-Cukalovic I, Laketic D, Vunjak-Novakovic G (1997) Analysis of liquid axial dispersion in an internal loop gas-lift bioreactor for beer fermentation with immobilized yeast cells. In: Proceedings 2nd European conference on fluidization, Bilbao, pp 627–635

    Google Scholar 

  • Nedovic V, Obradovic B, Leskosek-Cukalovic I, Trifunovic O, Pesic R, Bugarski B (2001) Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem 37(1):17–22

    Article  CAS  Google Scholar 

  • Nedovic V, Bezbradica D, Obradovic B, Leskosek-Cukalovic I, Bugarski B (2004) Primary beer fermentation by PVA-immobilized brewing yeast in a gas-lift bioreactor. In: World brewing congress 2004 CD Rom proceedings, San Diego, O-63

    Google Scholar 

  • Nedovic VA, Cukalovic IL, Bezbradica D, Obradovic B, Bugarski B (2005a) New porous matrices and procedures for yeast cell immobilization for primary beer fermentation. In: Proceedings of the 30th European brewery convention, Prague, pp 401–413

    Google Scholar 

  • Nedovic V, Willaert R, Leskosek-Cukalovic I, Obradovic B, Bugarski B (2005b) Beer production using immobilized cells. In: Nedovic V, Willaert R (eds) Applications of cell immobilization biotechnology. Springer, Dordrecht, The Netherlands, pp 259–273

    Chapter  Google Scholar 

  • Nitzsche F, Höhn G, Meyer-Pittroff R, Berger S, Pommersheim R (2001) A new way for immobilized yeast systems: secondary fermentation without heat treatment. In: Proceedings of the 28th European brewery convention, Budapest, pp 486–494

    Google Scholar 

  • Obradovic B, Nedovic V, Bugarski B, Willaert RG, Vunjak-Novakovic G (2004). In: Nedovic V, Willaert RG (eds) Focus on biotechnology, volume 8a: Fundamentals of cell immobilization biotechnology, Kluwer Academic Publishers, Dordrecht, pp 411–436

    Google Scholar 

  • Okabe M, Katoh M, Furugoori F, Yoshida M, Mitsui S (1992) Growth and fermentation characteristics of bottom brewer’s yeast under mechanical stirring. J Ferment Bioeng 73(2):148–152

    Article  CAS  Google Scholar 

  • Okabe M, Oda A, Park Y-S, Noguchi K, Okamoto T, Mitsui S (1994) Continuous beer fermentation by high cell-density culture of bottom brewer’s yeast. J Ferment Bioeng 77(1):41–45

    Article  CAS  Google Scholar 

  • Onaka T, Nakanishi K, Inoue T, Kubo S (1985) Beer brewing with immobilized yeast. Nat Biotechnol 3:467–470

    Article  CAS  Google Scholar 

  • Pajunen E, Grönqvist A (1994) Immobilized yeast fermenters for continuous lager beer maturation. In: Proceedings 23rd convention institute of brew. Australia and New Zealand Section, Sydney, pp 101–103

    Google Scholar 

  • Pajunen E, Tapani K, Berg H, Ranta B, Bergin J, Lommi H, Viljava T (2001) Controlled beer fermentation with continuous one-stage immobilized yeast reactor. In: Proceedings of the 28th European brewery convention, Budapest, pp 465–476

    Google Scholar 

  • Peddie HAB (1990) Ester formation in brewery fermentations. J Inst Brew 96:327–331

    CAS  Google Scholar 

  • Petersen EE, Margaritis A, Stewart RJ, Pilkington H, Mensour N (2004) The effects of wort valine concentration on the total diacetyl profile and levels late in batch fermentations with brewing yeast Saccharomyces carlsbergensis. J Am Soc Brew Chem 62(4):131–139

    CAS  Google Scholar 

  • Pilkington H, Maragaritis A, Mensour N, Russell I (1998) Fundamentals of immobilised yeast cell for continuous beer fermentation: a review. J Inst Brew 104:19–31

    Google Scholar 

  • Pilkington H, Maragaritis A, Mensour N, Sobczak J, Hancock I, Russell I (1999) Kappa-carrageenan gel immobilization of lager brewing yeast. J Inst Brew 105:398–404

    CAS  Google Scholar 

  • Pittner H, Back W, Swinkels W, Meersman E, Van Dieren B, Lomni H (1993) Continuous production of acidified wort for alcohol-free-beer with immobilized lactic acid bacteria. In: Proceedings European brewery convention congress, pp 323–329

    Google Scholar 

  • Raymond MC, Neufeld RJ, Poncelet D (2004) Encapsulation of brewing yeast in chitosan coated carrageenan microspheres by emulsification/termal gelation. Artif Cells Blood Substit Imobil Biotechnol 32:275–291

    Article  CAS  Google Scholar 

  • Reynolds TB, Fink GR (2001) Baker’s yeast, a model for fungal biofilm formation. Science 291:878–881

    Article  CAS  Google Scholar 

  • Ryder DS, Masschelein CA (1985) The growth process of brewing yeast and the biotechnological challenge. J Am Soc Brew Chem 43(2):66–75

    CAS  Google Scholar 

  • Shen H-Y, Moonjai N, Verstrepen KJ, Delvaux FR (2003a) Impact of attachment immobilization on yeast physiology and fermentation performance. J Am Soc Brew Chem 61(2):79–87

    CAS  Google Scholar 

  • Shen H-Y, Moonjai N, Verstrepen KJ, Delvaux F, Delvaux FR (2003b) Immobilization of Saccharomyces cerevisiae induces changes in the gene expression levels of HSP12, SSA3 and ATF1 during beer fermentation. J Am Soc Brew Chem 61(4):175–181

    CAS  Google Scholar 

  • Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE Jr (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279:30480–30489

    Article  CAS  Google Scholar 

  • Shindo S, Sahara H, Koshino S (1993) Relationship of production of succinic acid and methyl citric acid pathway during alcohol fermentation with immobilized yeast. Biotechnol Lett 15(1):51–56

    Article  CAS  Google Scholar 

  • Shindo S, Sahara H, Koshino S (1994) Suppression of α-acetolactate formation in brewing with immobilized yeast. J Inst Brew 100:69–72

    CAS  Google Scholar 

  • Smogrovicová D, Dömény Z (1999) Beer volatile by-product formation at different fermentation temperature using immobilized yeasts. Process Biochem 34:785–794

    Article  Google Scholar 

  • Smogrovicová D, Dömény Z, Gemeiner P, Malovíková A, Sturdík E (1997) Reactors for the continuous primary beer fermentation using immobilised yeast. Biotechnol Tech 11:261–264

    Article  Google Scholar 

  • Smogrovicová D, Dömény Navrátil M, Dvorák P (2001) Continuous beer fermentation using polyvinyl alcohol entrapped yeast. In: Proceedings European brewery convention congress, vol 50, pp 1–9

    Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1583

    Article  CAS  Google Scholar 

  • Stratford M (1989) Yeat flocculation: calcium specificity. Yeast 5:487–496

    Article  CAS  Google Scholar 

  • Tata M, Bower P, Bromberg S, Duncombe D, Fehring J, Lau V, Ryder D, Stassi P (1999) Immobilized yeast bioreactor systems for continuous beer fermentation. Biotechnol Progress 15:105–113

    Article  CAS  Google Scholar 

  • Teunissen AWRH, Steensma HY (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:1001–1013

    Article  CAS  Google Scholar 

  • Teunissen AW, Holub E, Van der Hucht J, Van den Berg JA, Steensma HY (1993) Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9:423–427

    Article  CAS  Google Scholar 

  • Udenfriend S, Kodukula K (1995) How glycosylphosphatidylinositol-anchored membrane proteins are made. Ann Rev Biochem 64:563–591

    CAS  Google Scholar 

  • Unemoto S, Mitani Y, Shinotsuka K (1998) Primary fermentation with immobilized yeast in a fluidized bed reactor. Master Brewers Assoc Americas Tech Quarterly 35:58–61

    Google Scholar 

  • Van De Winkel L, De Vuyst L (1997) Immobilized yeast cell systems in today’s breweries and tomorrow’s. Cerevisia 22(1):27–31

    Google Scholar 

  • Van De Winkel L, Van Beveren PC, Masschelein CA (1991) The application of an immobilized yeast loop reactor to the continuous production of alcohol-free beer. In: Proceedings European brewery convention congress, pp 307–314

    Google Scholar 

  • Van De Winkel L, Van Beveren PC, Borremans E, Goossens E, Masschelein CA (1993) High performance immobilized yeast reactor design for continuous beer fermentation. In: Preceedings of the 24th European brewery convention congress, pp 307–314

    Google Scholar 

  • Van Dieren B (1995) Yeast metabolism and the production of alcohol-free beer. In: EBC symposium immobilized yeast applications in the brewery industry, Monograph XXIV, Espoo, Finland, pp 66–76

    Google Scholar 

  • Van Iersel MFM, Van Dieren B, Rombouts FM, Abee T (1999) Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 24(7):407–411

    Article  Google Scholar 

  • Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28:1515–1525

    Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003a) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–205

    CAS  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Dufour J-P, Winderickx J, Thevelein JM, Pretorius IS, Delvaux FR (2003b) Flavor-active esters: Adding fruitiness to beer. J Biosci Bioeng 96(2):110–118

    CAS  Google Scholar 

  • Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540

    Article  CAS  Google Scholar 

  • Virkajärvi I (2002) Some developments in immobilized fermentation of beer during the last 30 years. Brauwelt Int 20:100–105

    Google Scholar 

  • Virkajärvi I, Krönlof J (1998) Long-term stability of immobilized yeast columns in primary fermentation. J Am Soc Brew Chem 56:70–75

    Google Scholar 

  • Virkajärvi I, Pohjala N (2000) Primary fermentation with immobilized yeast: effects of carrier materials on the flavor of the beer. J Inst Brew 106:311–318

    Google Scholar 

  • Virkajärvi I, Lindborg K, Kronlöf J, Pajunen E (1999) Effects of aeration on flavor compounds in immobilized primary fermentation. Monatschrift Brauwiss 52(9–12):25–28

    Google Scholar 

  • Virkajärvi I, Vainikka M, Virtanen H, Home S (2002) Productivity of immobilized yeast reactors with very-high-gravity worts. J Am Soc Brew Chem 60(4):188–197

    Google Scholar 

  • Viyas VK, Kuchin S, Berkely CD, Carlson M (2003) Snf1 kinases with different b-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Biol Cell 23:1341–1348

    Article  CAS  Google Scholar 

  • Wackerbauer K, Ludwig A, Möhle J, Legrand J (2003) Measures to improve long term stability of main fermentation with immobilized yeast. In: Proceedings of the 29th European brewery convention, pp 445–457

    Google Scholar 

  • Wainwright T (1973) Diacetyl – a review. J Inst Brew 79:451–470

    CAS  Google Scholar 

  • White FH, Portno AD (1979) The influence of wort composition on beer ester levels. In: Proceedings European brewery convention congress, pp 447–460

    Google Scholar 

  • Willaert R (2007) The beer brewing process: wort production and beer fermentation. In: Huie YH (ed) Handbook of food products manufacturing. John Wiley & Sons, New Jersey, pp 443–506

    Chapter  Google Scholar 

  • Willaert RG, Baron GV (1996) Gel entrapment and micro-encapsulation: methods, applications and engineering principles. Rev Chem Eng 12:5–205

    Google Scholar 

  • Willaert R, Nedovic VA (2006) Primary beer fermentation by immobilised yeast – a review on flavor formation and control strategies. J Chem Technol Biotechnol 81:1353–1367

    Article  CAS  Google Scholar 

  • Willaert R, Van de Winkel L, De Vuyst L (1999) Improvement of maltose and maltotriose brewery fermentation efficiency using immobilised cell technology. In: Proceedings of the 27th European brewery convention, Cannes, pp 663–671

    Google Scholar 

  • Yamauchi Y, Okamoto T, Murayama H, Kajino K, Amikura T, Hiratsu H, Nagara A, Kamiya T, Inoue T (1995) Rapid maturation of beer using an immobilized yeast bioreactor. 1. Heat conversion of α-acetolactate. J Biotechnol 38:101–108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Belgian Federal Science Policy Office, European Space Agency PRODEX program, the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen), Serbian Ministry of Science and Technological Development (#371005 & #142075), Flanders Interuniversity Institute for Biotechnology (VIB) and the Research Council of the VUB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor A. Nedović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Verbelen, P.J. et al. (2010). Bioprocess Intensification of Beer Fermentation Using Immobilised Cells. In: Zuidam, N., Nedovic, V. (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1008-0_11

Download citation

Publish with us

Policies and ethics