Skip to main content

Invariant-Based Characterization of the Relative Position of Two Projective Conics

  • Conference paper
  • First Online:
Nonlinear Computational Geometry

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 151))

Abstract

In this paper, we give predicates of bidegree at most (6, 6) in the input for characterizing the relative position of two projective conics. By relative position we mean the morphology of the intersection, the rigid isotopy class and which conic is inside the other when applicable. The predicates are derived by analyzing the algebraic invariant theory of pencils of conics and related constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Avritzer and R. Miranda. Stability of pencils of quadrics in <$>\mathbb{P}^4<$>. The Boletin de la Sociedad Matematica Mexicana, III Ser. 5(2):281–300, 1999.

    MATH  MathSciNet  Google Scholar 

  2. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry, Volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

  3. E. Briand. Duality for couples of conics. Unpublished, 2005.

    Google Scholar 

  4. E. Briand. Equations, inequations and inequalities characterizing the configurations of two real projective conics. Applicable Algebra in Engineering, Communication and Computing, 18(1–2):21–52, 2007.

    Article  MathSciNet  Google Scholar 

  5. T. Bromwich. Quadratic Forms and Their Classification by Means of Invariant Factors. Cambridge Tracts in Mathematics and Mathematical Physics, 1906.

    Google Scholar 

  6. J. Cremona. Classical invariants and 2-descent on elliptic curves. Journal of Symbolic Computation, 31(1/2):71–87, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. D'Andrea and A. Dickenstein. Explicit formulas for the multivariate resultant. Journal of Pure and Applied Algebra, 164:59–86, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Algebraic methods and arithmetic filtering for exact predicates on circle arcs. Comput. Geom. Theory Appl., 22:119–142, 2002.

    MATH  MathSciNet  Google Scholar 

  9. I. Dolgachev. Lectures on Invariant Theory. Cambridge University Press, 2003. London Mathematical Society Lecture Note Series, Volume 296.

    Google Scholar 

  10. L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. Near-optimal parameterization of the intersection of quadrics: II. A classification of pencils. Journal of Symbolic Computation, 43(3):192–215, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Elliott. An Introduction to the Algebra of Quantics. Clarendon Press, Oxford, 1913.

    Google Scholar 

  12. F. Etayo, L. González-Vega, and N. del Rio. A new approach to characterizing the relative position of two ellipses depending on one parameter. Computer Aided Geometric Design, 23(4):324–350, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston, 1994.

    Book  MATH  Google Scholar 

  14. O. Glenn. A Treatise on the Theory of Invariants. Ginn and Company, Boston, 1915.

    Google Scholar 

  15. J.H. Grace and A. Young. The Algebra of Invariants. Cambridge University Press, 1903.

    Google Scholar 

  16. D.A. Gudkov. Plane real projective quartic curves. In Topology and Geometry - Rohlin Seminar, Volume 1346 of Lecture Notes in Math., pages 341–347. Springer-Verlag, 1988.

    Google Scholar 

  17. D. Hilbert. Über die Theorie der algebraischen Formen. Math. Ann., 36:473–534, 1890.

    Article  MathSciNet  Google Scholar 

  18. D. Hilbert. Über die vollen Invariantensysteme. Math. Ann., 42:313–373, 1893.

    Article  MathSciNet  Google Scholar 

  19. H. Kraft and C. Procesi. Classical Invariant Theory, A Primer, 2000. Lecture Notes.

    Google Scholar 

  20. T. Lam. The Algebraic Theory of Quadratic Forms. W.A. Benjamin, Reading, MA, 1973.

    MATH  Google Scholar 

  21. H. Levy. Projective and Related Geometries. The Macmillan Co., New York, 1964.

    MATH  Google Scholar 

  22. Y. Liu and F.-L. Chen. Algebraic conditions for classifying the positional relationships between two conics and their applications. J. Comput. Sci. Technol., 19(5):665–673, 2004.

    Article  Google Scholar 

  23. P.J. Olver. Classical Invariant Theory. Cambridge University Press, 1999.

    Google Scholar 

  24. D. Pervouchine. Orbits and Invariants of Matrix Pencils. PhD thesis, Moscow State University, 2002.

    Google Scholar 

  25. B. Sturmfels. Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation. Springer-Verlag, 1993.

    MATH  Google Scholar 

  26. J. Todd. Projective and Analytical Geometry. Pitman, London, 1947.

    MATH  Google Scholar 

  27. J. A. Todd. Combinant forms associated with a pencil of conics. Proc. Lond. Math. Soc., II Ser. 50:150–168, 1948.

    Article  MATH  MathSciNet  Google Scholar 

  28. C. Tu, W. Wang, B. Mourrain, and J. Wang. Using signature sequences to classify intersection curves of two quadrics. Computer Aided Geometric Design, 2008, to appear.

    Google Scholar 

  29. H.W. Turnbull. The Theory of Determinants, Matrices and Invariants. Blackie (London, Glasgow), 1929.

    Google Scholar 

  30. F. Uhlig. A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil. Linear Algebra and Its Applications, 14:189–209, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  31. W. Wang and R. Krasauskas. Interference analysis of conics and quadrics. In Topics in Algebraic Geometry and Geometric Modeling, Volume 334 of Contemp. Math., pages 25–36. Amer. Math. Soc., 2003.

    Google Scholar 

  32. W. Wang, J. Wang, and M.-S. Kim. An algebraic condition for the separation of two ellipsoids. Computer Aided Geometric Design, 18(6):531–539, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  33. H. Weyl. The Classical Groups, Their Invariants and Representations. Princeton University Press, 1946.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Petitjean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this paper

Cite this paper

Petitjean, S. (2009). Invariant-Based Characterization of the Relative Position of Two Projective Conics. In: Emiris, I., Sottile, F., Theobald, T. (eds) Nonlinear Computational Geometry. The IMA Volumes in Mathematics and its Applications, vol 151. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0999-2_8

Download citation

Publish with us

Policies and ethics