Biophysics-Based Models of LTP/LTD

Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 5)

Abstract

Synaptic plasticity is the process by which neurons change the efficacy (or the strength) of their connections (synapses). In the connectionist paradigm, synaptic plasticity is a central concept because it is widely accepted that memory and learning are biologically encoded by variations of neuronal connections strength. In a more general sense, activity-dependent synaptic plasticity is assumed to be necessary and sufficient to encode and store memory in specific brain areas. Another feature of synaptic plasticity is the bidirectionality, which is the capability to increase or decrease the synaptic weights, thus encompassing the classical Hebbian paradigm.

Keywords

Depression Tyrosine Adenosine Serine Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat. Neurosci. 3: 1178–1183.CrossRefPubMedGoogle Scholar
  2. Artola A, Singer W (1993) Long term depression of excitatory synaptic transmission and its relationship to long term potentiation. Trends Neurosci. 16: 480–487.CrossRefPubMedGoogle Scholar
  3. Barria A, Muller D, Derkach V, Soderling TR (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long term potentiation. Science 276: 2042–2045CrossRefPubMedGoogle Scholar
  4. Bear MF (1996) A synaptic basis for memory storage in the cerebral cortex. Proc. Natl. Acad. Sci. USA 93: 13453–13459.CrossRefPubMedGoogle Scholar
  5. Bear MF, Cooper LN, Ebner FF (1987) A physiological basis for a theory of synapse modification. Science 237: 42–48.CrossRefPubMedGoogle Scholar
  6. Bhalla US (2004a) Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys. J. 87: 733–744.CrossRefPubMedGoogle Scholar
  7. Bhalla US (2004b) Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys. J. 87: 745–753.CrossRefPubMedGoogle Scholar
  8. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39.CrossRefPubMedGoogle Scholar
  9. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232: 331–356PubMedGoogle Scholar
  10. Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280: 1940–1942.CrossRefPubMedGoogle Scholar
  11. Carmignoto G, Vicini S (1992) Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science. 258: 1007–1011.CrossRefPubMedGoogle Scholar
  12. Castellani GC, Bazzani A, Cooper LN (2009) Toward a microscopic model of bidirectional synaptic plasticity. Proc. Natl. Acad. Sci. USA 106: 14091–14095CrossRefPubMedGoogle Scholar
  13. Castellani GC, Quinlan EM, Bersani F, Cooper LN, Shouval HZ (2005) A model of bidirectional synaptic plasticity: from signaling network to channel conductance. Learn. Mem. 12: 423–432CrossRefPubMedGoogle Scholar
  14. Castellani GC, Quinlan EM, Cooper LN, Shouval HZ (2001) A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proc. Natl. Acad. Sci. USA 98: 12772–12777CrossRefPubMedGoogle Scholar
  15. Cummings J, Mulkey R, Nicoll RM, Malenka R (1996) Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16: 825–833.CrossRefPubMedGoogle Scholar
  16. Derkach V, Barria A, Soderling T (1999) Ca2+/calmodulin-kinase II enhances channel conductance of -amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96: 3269–3274.CrossRefPubMedGoogle Scholar
  17. Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89: 4363–4367.CrossRefPubMedGoogle Scholar
  18. Feng J, Yan Z, Ferreira A, Tomizawa K, Liauw JA, Zhuo M, Allen PB, Ouimet CC, Greengard P (2000) Spinophilin regulates the formation and function of dendritic spines. Proc. Natl. Acad. Sci. USA 97: 9287–9292.CrossRefPubMedGoogle Scholar
  19. Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J. Neurosci. 17:2469–2476.PubMedGoogle Scholar
  20. Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434: 221–225.CrossRefPubMedGoogle Scholar
  21. Havekes R, Timmer M, Van der Zee EA (2007) Regional differences in hippocampal PKA immunoreactivity after training and reversal training in a spatial Y-maze task. Hippocampus 17: 338–348.CrossRefPubMedGoogle Scholar
  22. Huang YY, Nguyen PV, Abel T, Kandel ER (1996) Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn. Mem. 3: 74–85.CrossRefPubMedGoogle Scholar
  23. Kameyama K, Lee H-K, Bear MF, Huganir RL (1998) Involvement of a postsynaptic protein kinase a substrate in the expression of homosynaptic long-term depression. Neuron 21: 1163–1175.CrossRefPubMedGoogle Scholar
  24. Lee HK (2006) Synaptic plasticity and phosphorylation. Pharmacol. Ther. 112: 810–832.CrossRefPubMedGoogle Scholar
  25. Lee H-K, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405: 955–959.CrossRefPubMedGoogle Scholar
  26. Lee H-K, Kameyama K, Huganir R, Bear MF (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21: 1151–1162.CrossRefPubMedGoogle Scholar
  27. Lisman JE (1985) A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc. Natl. Acad. Sci. USA 82: 3055–3057.CrossRefPubMedGoogle Scholar
  28. Lisman JA (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA 86: 9574–9578.CrossRefPubMedGoogle Scholar
  29. Lisman J, Malenka RC, Nicoll RA, Malinow R (1997) Learning mechanisms: the case for CaM-KII. Science 276: 2001–2002.CrossRefPubMedGoogle Scholar
  30. Liu Y, Sun QA, Chen Q, Lee TH, Huang Y, Wetsel WC, Michelotti GA, Sullenger BA, Zhang X (2009) Targeting inhibition of GluR1 Ser845 phosphorylation with an RNA aptamer that blocks AMPA receptor trafficking. J. Neurochem. 108: 147–157.CrossRefPubMedGoogle Scholar
  31. Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA (1995) Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. USA 92: 11175–11179.CrossRefPubMedGoogle Scholar
  32. Lomo T (2003) The discovery of long-term potentiation. Philos. Trans. R Soc. Lond. B Biol. Sci. 358: 617–620CrossRefPubMedGoogle Scholar
  33. Lüscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3: 545–550.CrossRefPubMedGoogle Scholar
  34. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25: 103–126CrossRefPubMedGoogle Scholar
  35. McBain CJ, Mayer ML. (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol. Rev. 74: 723–760.PubMedGoogle Scholar
  36. Mu Y, Poo MM (2006) Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system. Neuron 50: 115–125.CrossRefPubMedGoogle Scholar
  37. Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9: 967–975.CrossRefPubMedGoogle Scholar
  38. Nakata H., Nakamura S (2007) Brain-derived ¡?TeX ?¿neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signalling. FEBS Lett. 581: 2047–2054.CrossRefPubMedGoogle Scholar
  39. Nelson SB, Turrigiano GG (2008) Strength through diversity. Neuron 60: 477–482.CrossRefPubMedGoogle Scholar
  40. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9: 65–75.CrossRefPubMedGoogle Scholar
  41. Petralia RS, Wenthold RJ (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318: 329–354CrossRefPubMedGoogle Scholar
  42. Philpot BD, Sekhar AK, Shouval HZ, Bear MF (2001) Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron 29: 157–169.CrossRefPubMedGoogle Scholar
  43. Quinlan EM, Philpot BD, Huganir RL, Bear MF. (1999) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2: 352–357.CrossRefPubMedGoogle Scholar
  44. Roche KW, O‘Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16:1179–1188.CrossRefPubMedGoogle Scholar
  45. Scannevin RH, Huganir RL (2000) Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1: 133–141.CrossRefPubMedGoogle Scholar
  46. Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284: 162–166.CrossRefPubMedGoogle Scholar
  47. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368:144–147.CrossRefPubMedGoogle Scholar
  48. Sheng M, Lee SH (2001) AMPA receptor trafficking and the control of synaptic transmission. Cell 105: 825–828.CrossRefPubMedGoogle Scholar
  49. Shi S, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105: 331–343.CrossRefPubMedGoogle Scholar
  50. Stocca G, Vicini S (1998) Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J. Physiol. 507: 13–24.CrossRefPubMedGoogle Scholar
  51. Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. (2004) DARPP-32: an integrator of neurotransmission. Annu. Rev. Pharmacol. Toxicol. 44: 269–296.CrossRefPubMedGoogle Scholar
  52. Tzounopoulos T, Rubio ME, Keen JE, Trussell LO (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron. 54: 291–301.CrossRefPubMedGoogle Scholar
  53. Walaas SI, Greengard P (1991) Protein phosphorylation and neuronal function. Pharmacol. Rev. 43: 299–349PubMedGoogle Scholar
  54. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313: 1093–1097CrossRefPubMedGoogle Scholar
  55. Wu LG, Betz WJ (1998) Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals. Biophys. J. 74(6): 3003–3009.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di Fisica Università di Bologna and Institute for Brain and Neural SystemsBrown UniversityBolognaItaly
  2. 2.Dipartimento di FisicaUniversità di BolognaBolognaItaly

Personalised recommendations