Skip to main content

The Making of a Detailed CA1 Pyramidal Neuron Model

  • Chapter
Book cover Hippocampal Microcircuits

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 5))

Abstract

The CA1 region of the hippocampal formation plays a key role in numerous learning and memory processes including working memory (Lee, 2002, 2003, 2004; Lee et al., 2005) acquisition and retrieval of contextual fear conditioning (Lee, 2004), temporal pattern completion (Hoang, 2008), temporal processing of information (Hunsaker et al., 2008), spatial and object novelty detection (Hunsaker et al., 2007; Vago, 2008) and several others. However, despite its functional significance, the exact ways in which neurons in the CA1 region contribute to all these memory processes remain elusive. According to a number of modelling studies, the function of the CA1 region is to compare information from its two primary inputs: (a) the Schaffer collateral afferents that relay processed cortical information from layer II of the entorhinal cortex via the trisynaptic loop and (b) the temporoammonic pathway which carries direct sensory information from layer III of the EC (Hjorth-Simonsen, 1972; Steward, 1976; Witter et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Achard, P., and De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Comput Biol. 2, e94.

    Google Scholar 

  • Amitai, Y., Friedman, A., Connors, B., and Gutnick, M. (1993). Regenerative electrical activity in apical dendrites of pyramidal cells in neocortex. Cerebral Cortex 3, 26–28.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, P., Silfvenius, H., Sundberg, S.H., Sveen, O. (1980). A comparison of distal and proximal dendritic synapses on CA1 pyramids on guinea pig hippocampal slices in vitro. J Physiol 307, 273–299.

    CAS  PubMed  Google Scholar 

  • Archie, K.A., and Mel, B.W. (2000). A model for intradendritic computation of binocular disparity. Nat Neurosci 3, 54–63.

    Article  CAS  PubMed  Google Scholar 

  • Ariav, G., Polsky, A., and Schiller, J. (2003). Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23, 7750–7758.

    CAS  PubMed  Google Scholar 

  • Ascoli, G.A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nat Rev Neurosci 7, 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Avery, R.B., and Johnston, D. (1997). Ca2+ channel antagonist U-92032 inhibits both T-type Ca2+ channels and Na+ channels in hippocampal CA1 pyramidal neurons. J Neurophysiol 77, 1023–1028.

    CAS  PubMed  Google Scholar 

  • Bernander, O., Douglas, R.J., Martin, K.A., and Koch, C. (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci USA 88, 11569–11573.

    Article  CAS  PubMed  Google Scholar 

  • Bernander, O., Koch, C., and Douglas, R.J. (1994). Amplification and linearization of distal synaptic input to cortical pyramidal cells. J Neurophysiol 72, 2743–2753.

    CAS  PubMed  Google Scholar 

  • Borg-Graham, L. (1998). Interpretations of data and mechanisms for hippocampal pyramidal cell models. In Cerebral Cortex (New York: Kluwer Academic/Plenum Publishers), pp. 19–138.

    Google Scholar 

  • Bowden, S.E., Fletcher, S., Loane, D.J., and Marrion, N.V. (2001). Somatic colocalization of rat SK1 and D class (Ca(v)1.2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. J Neurosci 21, RC175.

    Google Scholar 

  • Burkitt, N. (2006). A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input. Biol Cybern 95(1), 1–19.

    CAS  Google Scholar 

  • Burkitt, N. (2006). A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol Cybern 95(1), 97–112.

    CAS  Google Scholar 

  • Cajal, S.R.Y. (1995). Histology of the Nervous System (New York: Oxford).

    Google Scholar 

  • Cannon, R.C., Turner, D.A., Pyapali, G.K., and Wheal, H.V. (1998). An on-line archive of reconstructed hippocampal neurons. J Neurosci Methods 84, 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Cash, S., and Yuste, R. (1999). Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–394.

    Article  CAS  PubMed  Google Scholar 

  • Cauller, L.J., and Connors, B.W. (1994). Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J Neurosci 14, 751–762.

    CAS  PubMed  Google Scholar 

  • Chklovskii, D.B., Mel, B.W., and Svoboda, K. (2004). Cortical rewiring and information storage. Nature 431, 782–788.

    Article  CAS  PubMed  Google Scholar 

  • Contreras, D., Destexhe, A., and Steriade, M. (1997). Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J Neurophysiol 78, 335–350.

    CAS  PubMed  Google Scholar 

  • Day, M., Carr, D.B., Ulrich, S., Ilijic, E., Tkatch, T., and Surmeier, D.J. (2005). Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci 25, 8776–8787.

    Article  CAS  PubMed  Google Scholar 

  • De Schutter, E., and Bower, J.M. (1994). Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proc Natl Acad Sci USA 91, 4736–4740.

    Article  PubMed  Google Scholar 

  • Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1, 195–230.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. (1997). Kinetic models of synaptic transmission. In Methods in Neuronal Modeling, C. Koch, and I. Segev, eds. (Cambridge, MA: MIT Press).

    Google Scholar 

  • Dvorak-Carbone, H., and Schuman, E.M. (1999). Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing. J Neurophysiol 82, 3213–3222.

    CAS  PubMed  Google Scholar 

  • Gasparini, S., and Magee, J.C. (2006). State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26, 2088–2100.

    Article  CAS  PubMed  Google Scholar 

  • Gasparini, S., Migliore, M., and Magee, J.C. (2004). On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24, 11046–11056.

    Article  CAS  PubMed  Google Scholar 

  • Gerstner, W., and Kistler, W. (2002). Spiking Neurons Models: Single Neurons, Populations, Plasticity. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Golding, N.L., Jung, H.Y., Mickus, T., and Spruston, N. (1999). Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci 19, 8789–8798.

    CAS  PubMed  Google Scholar 

  • Golding, N.L., Kath, W.L., and Spruston, N. (2001). Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol 86, 2998–3010.

    CAS  PubMed  Google Scholar 

  • Golding, N.L., Mickus, T.J., Katz, Y., Kath, W.L., and Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568, 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Golding, N.L., and Spruston, N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  • Golomb, D., Yue, C., and Yaari, Y. (2006). Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. pp. 1912–1926.

    Google Scholar 

  • Gomez González, J.F., Mel, B.W., and Poirazi, P. (2009). Distinguishing linear vs. nonlinear integration in CA1 radial oblique dendrites: it’s about time. submitted.

    Google Scholar 

  • Graham, B.P. (2001). Pattern recognition in a compartmental model of a CA1 pyramidal neuron. Network 12, 473–492.

    CAS  PubMed  Google Scholar 

  • Hasselmo, M., and Schnell, E. (1994). Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14, 3898–3914.

    CAS  PubMed  Google Scholar 

  • Hausser, M., Spruston, N., and Stuart, G.J. (2000). Diversity and dynamics of dendritic signaling. Science 290, 739–744.

    Article  CAS  PubMed  Google Scholar 

  • Herz, A.V.M., Gollisch, T., Machens, C.K., and Jaeger, D. (2006). Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796), 80–85.

    Article  CAS  PubMed  Google Scholar 

  • Hines, M.L., and Carnevale, N.T. (1997). The NEURON simulation environment. Neural Comput 9, 1179–1209.

    Article  CAS  PubMed  Google Scholar 

  • Hjorth-Simonsen, A., and Jeune, B. (1972) Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144, 215–232.

    Article  CAS  PubMed  Google Scholar 

  • Hoang, L., Kesner, R.P. (2008). Dorsal hippocampus, CA3, and CA1 lesions disrupt temporal sequence completion. Behav Neurosci 122, 9–15.

    Article  PubMed  Google Scholar 

  • Hoffman, D.A., Magee, J.C., Colbert, C.M., and Johnston, D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875.

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat, A., De Paola, V., Wilbrecht, L., and Knott, G.W. (2008). Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo. Behav Brain Res 192, 20–25.

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat, A.J., Trachtenberg, J.T., Wilbrecht, L., Shepherd, G.M., Zhang, X., Knott, G.W., and Svoboda, K. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291.

    Article  CAS  PubMed  Google Scholar 

  • Hunsaker, M., Lee, B., and Kesner, R.P. (2008). Evaluating the temporal context of episodic memory: the role of CA3 and CA1. Behav Brain Res. 188, 310–315.

    Article  CAS  PubMed  Google Scholar 

  • Hunsaker, M., Mooy, G.G., Swift, J.S., Kesner, R.P. (2007). Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing. Behav Neurosci 121, 742–750.

    Article  PubMed  Google Scholar 

  • Jarsky, T., Roxin, A., Kath, W.L., and Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8, 1667–1676.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, D., and Amaral, D. (2005). Hippocampus. In The Synaptic Organization of the Brain, G. Shepherd, ed. (New York: Oxford University Press), pp. 455–498.

    Google Scholar 

  • Johnston, D., Christie, B.R., Frick, A., Gray, R., Hoffman, D.A., Schexnayder, L.K., Watanabe, S., and Yuan, L.L. (2003). Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 358, 667–674.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, D., Hoffman, D.A., Colbert, C.M., and Magee, J.C. (1999). Regulation of back-propagating action potentials in hippocampal neurons. Curr Opin Neurobiol 9, 288–292.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, D., Hoffman, D.A., Magee, J.C., Poolos, N.P., Watanabe, S., Colbert, C.M., and Migliore, M. (2000). Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525 Pt 1, 75–81.

    Google Scholar 

  • Johnston, D., and Narayanan, R. (2008). Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31, 309–316.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H.Y., Mickus, T., and Spruston, N. (1997). Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J Neurosci 17, 6639–6646.

    CAS  PubMed  Google Scholar 

  • Katz, Y., Kath, W.L., Spruston, N., and Hasselmo, M.E. (2007). Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. PLoS Comput Biol 3, e234.

    Google Scholar 

  • Keren, N., Peled, N., and Korngreeen, A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94, 3730–3742.

    Article  PubMed  Google Scholar 

  • Kesner, R.P., Lee, I., and Gilbert, P. (2004). A behavioral assessment of hippocampal function based on a subregional analysis. Rev Neurosci 15, 333–351.

    PubMed  Google Scholar 

  • Kim, J., Jung, S.-C., Clemens, A.M., Petralia, R.S., and Hoffman, D.A. (2007). Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 54, 933–947.

    Article  CAS  PubMed  Google Scholar 

  • Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons (New York: Oxford University Press).

    Google Scholar 

  • Koch, C., Poggio, T., and Torre, V. (1983). Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80, 2799–2802.

    Article  CAS  PubMed  Google Scholar 

  • Koch, C., and Segev, I. (2000). The role of single neurons in information processing. Nat Neurosci 3 Suppl, 1171–1177.

    Google Scholar 

  • Larkum, M.E., Senn, W., and Luscher, H.R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb Cortex 14, 1059–1070.

    Article  PubMed  Google Scholar 

  • Larkum, M.E., Zhu, J.J., and Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, G., and Borst, A. (2007). Short stories about small brains: linking biophysics to computation. In Dendrites, G.J. Stuart et al., ed. (New York: Oxford University Press), pp. 441–464.

    Google Scholar 

  • Lee, I., Jerman, TS, Kesner, RP. (2005). Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiol Learn Mem. 84, 138–147.

    Article  PubMed  Google Scholar 

  • Lee, I., and Kesner, R.P. (2002). Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci 5, 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I., and Kesner, R.P. (2003). Differential roles of dorsal hippocampal subregions in spatial working memory with short versus intermediate delay. Behav Neurosci 117, 1044–1053.

    Article  PubMed  Google Scholar 

  • Lee, I., and Kesner, R.P. (2004). Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14, 301–310.

    Article  PubMed  Google Scholar 

  • Li, X., and Ascoli, G.A. (2006). Computational simulation of the input-output relationship in hippocampal pyramidal cells. J Comput Neurosci 21, 191–209.

    Article  PubMed  Google Scholar 

  • Liebmann, L., Karst, H., Sidiropoulou, K., van Gemert, N., Meijer, O.C., Poirazi, P., and Joels, M. (2008). Differential effects of corticosterone on the slow afterhyperpolarization in the basolateral amygdala and CA1 region: possible role of calcium channel subunits. J Neurophysiol 99, 958–968.

    Article  CAS  PubMed  Google Scholar 

  • London, M., and Hausser, M. (2005). Dendritic computation. Annu Rev Neurosci 28, 503–532.

    Article  CAS  PubMed  Google Scholar 

  • Losonczy, A., and Magee, J.C. (2006). Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307.

    Article  CAS  PubMed  Google Scholar 

  • Losonczy, A., Makara, J.K., and Magee, J.C. (2008). Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441.

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri, G., McBain, C.J. (1995). Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region. 15 (1), 137–145.

    CAS  Google Scholar 

  • Magee, J., Hoffman, D., Colbert, C., and Johnston, D. (1998). Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu Rev Physiol 60, 327–346.

    Article  CAS  PubMed  Google Scholar 

  • Magee, J.C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18, 7613–7624.

    CAS  PubMed  Google Scholar 

  • Magee, J.C., and Cook, E.P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3, 895–903.

    Article  CAS  PubMed  Google Scholar 

  • Magee, J.C., and Johnston, D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304.

    Article  CAS  PubMed  Google Scholar 

  • Magee, J.C., and Johnston, D. (2005). Plasticity of dendritic function. Curr Opin Neurobiol 15, 334–342.

    Article  CAS  PubMed  Google Scholar 

  • Markaki, M., Orphanoudakis, S., and Poirazi, P. (2005). Modelling reduced excitability in aged CA1 neurons as a calcium-dependent process. Neurocomputing 65–66, 305–314.

    Article  Google Scholar 

  • Marrion, N.V., and Tavalin, S.J. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395, 900–905.

    Article  CAS  PubMed  Google Scholar 

  • Megias, M., Emri, Z., Freund, T.F., Gulyas, A.I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540.

    Article  CAS  PubMed  Google Scholar 

  • Mel, B.W. (1992a). NMDA-Based pattern discrimination in a modeled cortical neuron. Neural Comput 4, 502–516.

    Article  Google Scholar 

  • Mel, B.W. (1992b). The clusteron: toward a simple abstraction for a complex neuron. In Advances in Neural Information Processing Systems, J. Moody, S. Hanson, and R. Lippman, eds. (San Mateo, CA: Morgan Kaufmann), pp. 35–42.

    Google Scholar 

  • Mel, B.W. (1993). Synaptic integration in an excitable dendritic tree. J Neurophysiol 70, 1086–1101.

    CAS  PubMed  Google Scholar 

  • Mel, B.W. (1999). Computational neuroscience. Think positive to find parts. Nature 401, 759–760.

    Article  CAS  PubMed  Google Scholar 

  • Mel, B.W., Ruderman, D.L., and Archie, K.A. (1998). Translation-invariant orientation tuning in visual “complex” cells could derive from intradendritic computations. J Neurosci 18, 4325–4334.

    CAS  PubMed  Google Scholar 

  • Metz, A.E., Spruston, N., and Martina, M. (2007). Dendritic D-type potassium currents inhibit the spike afterdepolarization in rat hippocampal CA1 pyramidal neurons. J Physiol 581, 175–187.

    Article  CAS  PubMed  Google Scholar 

  • Migliore, M. (2003). On the integration of subthreshold inputs from Perforant Path and Schaffer Collaterals in hippocampal CA1 pyramidal neurons. J Comput Neurosci 14, 185–192.

    Article  PubMed  Google Scholar 

  • Migliore, M., Ferrante, M., and Ascoli, G.A. (2005). Signal propagation in oblique dendrites of CA1 pyramidal cells. J Neurophysiol 94, 4145–4155.

    Article  PubMed  Google Scholar 

  • Migliore, M., Hoffman, D.A., Magee, J.C., and Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7, 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Migliore, M., Messineo, L., and Ferrante, M. (2004). Dendritic Ih selectively blocks temporal summation of unsynchronized sistal inputs in CA1 pyramidal neurons. J Comput Neurosci 16, 5–13.

    Article  CAS  PubMed  Google Scholar 

  • Migliore, M., and Shepherd, G.M. (2002). Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3, 362–370.

    Article  CAS  PubMed  Google Scholar 

  • Moczydlowski, E., and Latorre, R. (1983). Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82, 511–542.

    Article  CAS  PubMed  Google Scholar 

  • Nevian, T., Larkum, M.E., Polsky, A., and Schiller, J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10, 206–214.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly, R., McClelland, J.L. (1994). Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4, 661–682.

    Article  PubMed  Google Scholar 

  • Otmakhova, N.A., Otmakhov, N., and Lisman, J.E. (2002). Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells. J Neurosci 22, 1199–1207.

    CAS  PubMed  Google Scholar 

  • Pissadaki, E.K., and Poirazi, P. (2007). Modulation of excitability in CA1 pyramidal neurons via the interplay of entorhinal cortex and CA3 inputs. Neurocomputing 70, 1735–1740.

    Article  Google Scholar 

  • Pissadaki, E.K., Sidiropoulou K., Reczko M., and Poirazi, P. Encoding of spatio-temporal input characteristics by a single CA1 pyramidal neuron model. (submitted).

    Google Scholar 

  • Poirazi, P., Brannon, T., and Mel, B.W. (2003a). Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987.

    Article  CAS  PubMed  Google Scholar 

  • Poirazi, P., Brannon, T., and Mel, B.W. (2003b). Pyramidal neuron as two-layer neural network. Neuron 37, 989–999.

    Article  CAS  PubMed  Google Scholar 

  • Poirazi, P., and Mel, B.W. (2001). Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–796.

    Article  CAS  PubMed  Google Scholar 

  • Polsky, A., Mel, B.W., and Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7, 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Poolos, N.P., Migliore, M., and Johnston, D. (2002). Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 5, 767–774.

    CAS  PubMed  Google Scholar 

  • Raab-Graham, K., Haddick, P.C., Jan, Y.N., and Jan, L.Y. (2006). Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science 314, 144–148.

    Article  CAS  PubMed  Google Scholar 

  • Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input-output relations. In Neural Theory and Modeling, R.F. Reiss, ed. (Stanford University Press).

    Google Scholar 

  • Reyes, A. (2001). Influence of dendritic conductances on the input-output properties of neurons. Annu Rev Neurosci 24, 653–675.

    Article  CAS  PubMed  Google Scholar 

  • Rolls, E., and Treves, A. (1994). Neural networks in the brain involved in memory and recall. Prog Brain Res 102, 335–341.

    Article  CAS  PubMed  Google Scholar 

  • Rolls, E.T., and Kesner, R.P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Prog Neurobiol 79, 1–48.

    Article  CAS  PubMed  Google Scholar 

  • Sah, P., and Bekkers, J.M. (1996). Apical dendritic location of slow afterhyperpolarization current in hippocampal pyramidal neurons: implications for the integration of long-term potentiation. J Neurosci 16, 4537–4542.

    CAS  PubMed  Google Scholar 

  • Shao, L.R., Halvorsrud, R., Borg-Graham, L., and Storm, J.F. (1999). The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521 Pt 1, 135–146.

    Google Scholar 

  • Shepherd, G.M., and Brayton, R.K. (1987). Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience 21, 151–165.

    Article  CAS  PubMed  Google Scholar 

  • Sidiropoulou, K., Joels, M., and Poirazi, P. (2007). Modeling stress-induced adaptations in Ca2+ dynamics. Neurocomputing 70, 1640–1644.

    Article  Google Scholar 

  • Sidiropoulou, K., Pissadaki, E.K., and Poirazi, P. (2006). Inside the brain of a neuron. EMBO Rep 7, 886–892.

    Article  CAS  PubMed  Google Scholar 

  • Softky, W. (1994). Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58, 13–41.

    Article  CAS  PubMed  Google Scholar 

  • Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9, 206–221.

    Article  CAS  PubMed  Google Scholar 

  • Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300.

    Article  CAS  PubMed  Google Scholar 

  • Steward, O., and Scoville, S.A. (1976). Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169, 343–370.

    Article  Google Scholar 

  • Stuart, G., and Spruston, N. (1998). Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18, 3501–3510.

    CAS  PubMed  Google Scholar 

  • Stuart, G., Spruston, N., Sakmann, B., and Hausser, M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20, 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Trachtenberg, J.T., Chen, B.E., Knott, G.W., Feng, G., Sanes, J.R., Welker, E., and Svoboda, K. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794.

    Article  CAS  PubMed  Google Scholar 

  • Treves, A. (2004). Computational constraints between retrieving the past and predicting the future, and the CA3–CA1 differentiation. Hippocampus 14, 539–556.

    Article  PubMed  Google Scholar 

  • Vago, D., and Kesner, R.P. (2008). Disruption of the direct perforant path input to the CA1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 189, 273–283.

    Article  PubMed  Google Scholar 

  • Vinogradova, O. (2001). Hippocampus as comparator: role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 11, 578–598.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, S., Hoffman, D.A., Migliore, M., and Johnston, D. (2002). Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 99, 8366–8371.

    Article  CAS  PubMed  Google Scholar 

  • Wei, D.S., Mei, Y.A., Bagal, A., Kao, J.P., Thompson, S.M., Tang, C.M. (2001). Compartmentalized and binary behavior of terminal dendrites in hippocampal pyramidal neurons. Science 293, 2272–2275.

    Article  CAS  PubMed  Google Scholar 

  • Witter, M.P., Griffioen, A.W., Jorritsma-Byham, B., and Krijnen, J.L. (1988). Entorhinal projections to the hippocampal CA1 region in the rat: an underestimated pathway. Neurosci Lett 85, 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Zuhlke, R.D., Pitt, G.S., Tsien, R.W., and Reuter, H. (2000). Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. J Biol Chem 275, 21121–21129.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panayiota Poirazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Poirazi, P., Pissadaki, EK. (2010). The Making of a Detailed CA1 Pyramidal Neuron Model. In: Cutsuridis, V., Graham, B., Cobb, S., Vida, I. (eds) Hippocampal Microcircuits. Springer Series in Computational Neuroscience, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0996-1_11

Download citation

Publish with us

Policies and ethics