Skip to main content

Interventions and Future Therapies: Lessons from Animal Models

  • Chapter
  • First Online:
The Aging Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 34))

Abstract

The chapters in this book provide ample evidence that age-related hearing loss is caused by multiple factors combining genetic traits with a constant barrage of lifetime insults to the hearing organ. Such insults may include noise exposure in occupational settings or at leisure (from loud machinery to iPods or rock concerts), chemicals and solvents in the work place, life style (drinking, smoking), diseases (diabetes, infections), and even the adverse “ototoxic” effects of medications on the inner ear. It is not even necessary that the insults be severe enough to cause immediate damage. Kujawa and Liberman (2006) subjected adult mice to a noise level that did not induce any threshold shifts two weeks after exposure. However, as the animals aged, they showed a continuing primary neural degeneration and deterioration of neural responses. Age-related changes in the central auditory system add to the complexity of the problem. Determining the cause(s) of hearing difficulties in an aging patient is challenging to say the least, let alone the question of how to prevent or treat such hearing impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai U, Seidman MD, Hinojosa R, Quirk WS (1997) Mitochondrial DNA deletions associated with aging and possibly presbycusis: a human archival temporal bone study. Am J Otol 18:449–453.

    CAS  PubMed  Google Scholar 

  • Bengmark S (2006) Impact of nutrition on aging and disease. Curr Opin Clin Nutr Metab Care 9:2–7.

    Article  CAS  PubMed  Google Scholar 

  • Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305.

    Article  CAS  PubMed  Google Scholar 

  • Canlon B (1996) The effects of sound conditioning on the cochlea. In: Salvi RJ, Henderson DH, Colletti V, Fiorino F (eds) Auditory Plasticity and Regeneration. New York: Thieme Medical Publishers, pp. 118–127.

    Google Scholar 

  • Caruso S, Cianci A, Grasso D, Agnello C, Galvani F, Maiolino L, Serra A (2000) Auditory brainstem response in postmenopausal women treated with hormone replacement therapy: a pilot study. Menopause 7:178–183.

    Article  CAS  PubMed  Google Scholar 

  • Coleman JR, Campbell D, Cooper WA, Welsh MG, Moyer J (1994) Auditory brainstem responses after ovariectomy and estrogen replacement in rat. Hear Res 80:209–215.

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Neeper S (1996) Activity-dependent plasticity and the aging brain. In: Rowe JW, Schneider EL (eds) Handbook of the Biology of Aging. San Diego, CA: Academic Press, pp. 284–299.

    Google Scholar 

  • Dai P, Yang W, Jiang S, Gu R, Yuan H, Han D, Guo W, Cao J (2004) Correlation of cochlear blood supply with mitochondrial DNA common deletion in presbyacusis. Acta Otolaryngol 124:130–136.

    Article  CAS  PubMed  Google Scholar 

  • Dehan CP, Jerger J (1990) Analysis of gender differences in the auditory brainstem response. Laryngoscope 100:18–24.

    Article  CAS  PubMed  Google Scholar 

  • Dluzen D, Jain R, Liu B (1994) Modulatory effects of testosterone on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurochem 62:94–101.

    Article  CAS  PubMed  Google Scholar 

  • Durga J, Verhoef P, Anteunis LJ, Schouten E, Kok FJ (2007) Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann Intern Med 146:1–9.

    PubMed  Google Scholar 

  • Elkind-Hirsch KE, Stoner WR, Stach BA, Jerger JF (1992) Estrogen influences auditory brainstem responses during the normal menstrual cycle. Hear Res 60:143–148.

    Article  CAS  PubMed  Google Scholar 

  • Erway LC, Zheng QY, Johnson KR (2001) Inbred strails of mice for genetics of hearing in mammals: searching for genes for hearing loss. In: Willott JF (ed) Handbook of Mouse Auditory Research: From Behavior to Molecular Biology. Boca Raton, FL: CRC Press, pp. 429–440.

    Chapter  Google Scholar 

  • Falls WA, Pistell PJ (2001) Learning and the auditory system: fear-potentiated startle studies. In: Willott JF (ed) Handbook of Mouse Auditory Research: From Behavior to Molecular Biology. Boca Raton, FL: CRC Press, pp. 91–96.

    Google Scholar 

  • Feldman ML (1984) Morphological observations on the cochleas of very old rats. Assoc Res Otolaryngol Abstr 7:14.

    Google Scholar 

  • Fischel-Ghodsian N, Bykhovskaya Y, Taylor K, Kahen T, Cantor R, Ehrenman K, Smith R, Keithley E (1997) Temporal bone analysis of patients with presbycusis reveals high frequency of mitochondrial mutations. Hear Res 110:147–154.

    Article  CAS  PubMed  Google Scholar 

  • Flynn AJ, Dengerink HA, Wright JW (1990) Androgenic effects on angiotensin II-induced blood pressure and cochlear blood flow changes in rats. Hear Res 50:119–125.

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD, Walton JP (2001) Aging and the mouse central auditory system. In: Willott JF (ed) Handbook of Mouse Auditory Research: From Behavior to Molecular Biology. Boca Raton, FL: CRC Press, pp. 339–380.

    Chapter  Google Scholar 

  • Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by estradiol. Prog Neurobiol 63:29–60.

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes P, Frisina ST, Mapes F, Tadros SF, Frisina DR, Frisina RD (2006) Progestin negatively affects hearing in aged women. Proc Nat Acad Sci USA 103:14246–14249.

    Article  CAS  PubMed  Google Scholar 

  • Halsey K, Skjönsberg A, Ulfendahl M, Dolan DF (2005) Efferent-mediated adaptation of the DPOAE as a predictor of aminoglycoside toxicity. Hear Res 201:99–108.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JE Jr (1971) The role of vasoconstriction in noise-induced hearing loss. Ann Otol Rhinol Laryngol 80:903–913.

    PubMed  Google Scholar 

  • Hederstierna C, Hultcrantz M, Collins A, Rosenhall U (2007) Hearing in women at menopause. Prevalence of hearing loss, audiometric configuration and relation to hormone replacement therapy. Acta Otolaryngol 127:149–155.

    Article  PubMed  Google Scholar 

  • Heilbronn LK, Ravussin E (2003) Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78:361–369.

    CAS  PubMed  Google Scholar 

  • Henderson D, Subramaniam M, Spongr V, Attanasio G (1996) Biological mechanisms for the “toughening” phenomenon. In: Salvi RJ, Henderson DH, Colletti V, Fiorino F (eds) Auditory Plasticity and Regeneration. New York: Thieme Medical Publishers, pp. 143–154.

    Google Scholar 

  • Henry KR (1986) Effects of dietary restriction on presbyacusis in the mouse. Audiology 25:329–337.

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (2002) Sex- and age-related elevation of cochlear nerve envelope response (CNER) and auditory brainstem response (ABR) thresholds in C57BL/6 mice. Hear Res 170:107–115.

    Article  PubMed  Google Scholar 

  • Houston DK, Johnson MA, Nozza RJ, Gunter EW, Shea KJ, Cutler GM, Edmonds JT (1999) Age-related hearing loss, vitamin B-12, and folate in elderly women. Am J Clin Nutr 69:564–571.

    CAS  PubMed  Google Scholar 

  • Hultcrantz M, Stenberg AE, Fransson A, Canlon B (2000) Characterization of hearing in an X,0 ‘Turner mouse’. Hear Res 143:182–188.

    Article  CAS  PubMed  Google Scholar 

  • Ingram DK, Young J, Mattison JA (2007) Calorie restriction in nonhuman primates: assessing effects on brain and behavioral aging. Neuroscience 145:1359–1364.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Talaska AE, Schacht J, Sha SH (2007) Oxidative imbalance in the aging inner ear. Neurobiol Aging 28:1605–1612.

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Nyberg L, Sandblom J, Stigsdotter Neely A, Ingvar M, Magnus Petersson K, Backman L (2006) Cognitive and neural plasticity in aging: general and task-specific limitations. Neurosci Biobehav Rev 30:864–871.

    Article  PubMed  Google Scholar 

  • Keuroghlian AS, Knudsen EI (2007) Adaptive auditory plasticity in developing and adult animals. Prog Neurobiol 82:109–121.

    Article  PubMed  Google Scholar 

  • Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J (1998) Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci USA 95:1852–1857.

    Article  CAS  PubMed  Google Scholar 

  • Kimonides VG, Spillantini MG, Sofroniew MV, Fawcett JW, Herbert J (1999) Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience 89:429–436.

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26:2115–2123.

    Article  CAS  PubMed  Google Scholar 

  • Laugel GR, Dengerink HA, Wright JW (1987) Ovarian steroid and vasoconstrictor effects on cochlear blood flow. Hear Res 31:245–251.

    Article  CAS  PubMed  Google Scholar 

  • Laugel GR, Wright JW, Dengerink HA (1988) Angiotensin II and progesterone effects on laser Doppler measures of cochlear blood flow. Acta Otolaryngol 106:34–39.

    Article  CAS  PubMed  Google Scholar 

  • Le T, Keithley EM (2007) Effects of antioxidants on the aging inner ear. Hear Res 226:194–202.

    Article  CAS  PubMed  Google Scholar 

  • Leake PA, Hradek GT, Rebscher SJ, Snyder RL (1991) Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear Res 54:251–271.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Marcus DC (2001) Estrogen acutely inhibits ion transport by isolated stria vascularis. Hear Res 158:123–130.

    Article  CAS  PubMed  Google Scholar 

  • Mahncke HW, Bronstone A, Merzenich MM (2006) Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res 157:81–109.

    Article  PubMed  Google Scholar 

  • Martin B, Mattson MP, Maudsley S (2006) Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 5:332–353.

    Article  CAS  PubMed  Google Scholar 

  • McFadden SL, Willott JF (1994) Responses of inferior colliculus neurons in C57BL/6J mice with and without sensorineural hearing loss: effects of changing the azimuthal location of an unmasked pure-tone stimulus. Hear Res 78:115–131.

    Article  CAS  PubMed  Google Scholar 

  • McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ (1999) Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 20:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Miller JM, Altschuler RA, Dupont J, Tucci D (1996) Consequences of deafness and electrical stimulation on the auditory systerm. In: Salvi RJ, Henderson DH, Colletti V, Fiorino F (eds) Auditory Plasticity and Regeneration. New York: Thieme Medical Publishers, pp. 378–391.

    Google Scholar 

  • Mills CD, Loos BM, Henley CM (1999) Increased susceptibility of male rats to kanamycin-induced cochleotoxicity. Hear Res 128:75–79.

    Article  CAS  PubMed  Google Scholar 

  • Miquel J, Ferrandiz ML, De Juan E, Sevila I, Martinez M (1995) N-acetylcysteine protects against age-related decline of oxidative phosphorylation in liver mitochondria. Eur J Pharmacol 292:333–335.

    CAS  PubMed  Google Scholar 

  • Mobbs CV, Bray GA, Atkinson RL, Bartke A, Finch CE, Maratos-Flier E, Crawley JN, Nelson JF (2001) Neuroendocrine and pharmacological manipulations to assess how caloric restriction increases life span. J Gerontol A Biol Sci Med Sci 56:34–44.

    PubMed  Google Scholar 

  • Mora F, Segovia G, del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55:78–88.

    Article  CAS  PubMed  Google Scholar 

  • Neuman, AC (1996) Late-onset auditory deprivation: A review of past research and an assessment of future research needs. Ear Hear 17:3S-13S.

    Article  CAS  PubMed  Google Scholar 

  • Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35:21–23.

    Article  CAS  PubMed  Google Scholar 

  • Ohinata Y, Miller JM, Schacht J (2003) Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Res 966:265–273.

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK (2006) Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 1091:89–102.

    Article  CAS  PubMed  Google Scholar 

  • Park JC, Cook KC, Verde EA (1990) Dietary restriction slows the abnormally rapid loss of spiral ganglion neurons in C57BL/6 mice. Hear Res 48:275–279.

    Article  CAS  PubMed  Google Scholar 

  • Park S, Johnson MA, Shea-Miller K, De Chicchis AR, Allen RH, Stabler SP (2006) Age-related hearing loss, methylmalonic acid, and vitamin B12 status in older adults. J Nutr Elderly 25:105–120.

    Article  Google Scholar 

  • Pearson JD, Morrell CH, Gordon-Salant S, Brant LJ, Metter EJ, Klein LL, Fozard JL (1995) Gender differences in a longitudinal study of age-associated hearing loss. J Acoust Soc Am 97:1196–1205.

    Article  CAS  PubMed  Google Scholar 

  • Picciotti P, Torsello A, Wolf FI, Paludetti G, Gaetani E, Pola R (2004) Age-dependent modifications of expression level of VEGF and its receptors in the inner ear. Exp Gerontol 39:1253–1258.

    Article  CAS  PubMed  Google Scholar 

  • Pickles JO (2004) Mutation in mitochondrial DNA as a cause of presbyacusis. Audiol Neurootol 9:23–33.

    Article  CAS  PubMed  Google Scholar 

  • Pike CJ (2001) Testosterone attenuates beta-amyloid toxicity in cultured hippocampal neurons. Brain Res 919:160–165.

    Article  CAS  PubMed  Google Scholar 

  • Popelka MM, Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Nondahl DM (2000) Moderate alcohol consumption and hearing loss: a protective effect. J Am Geriatr Soc 48:1273–1278.

    CAS  PubMed  Google Scholar 

  • Pouliot WA, Handa RJ, Beck SG (1996) Androgen modulates N-methyl-d-aspartate-mediated depolarization in CA1 hippocampal pyramidal cells. Synapse 23:10–19.

    Article  CAS  PubMed  Google Scholar 

  • Pujol R, Rebillard G, Puel JL, Lenoir M, Eybalin M, Recasens M (1990) Glutamate neurotoxicity in the cochlea: a possible consequence of ischaemic or anoxic conditions occurring in aging. Acta Otolaryngol Suppl 476:32–36.

    CAS  PubMed  Google Scholar 

  • Rybak LP, Whitworth CA (2005) Ototoxicity: therapeutic opportunities. Drug Discov Today 10:1313–1321.

    Article  CAS  PubMed  Google Scholar 

  • Seidman MD (2000) Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope 110:727–738.

    Article  CAS  PubMed  Google Scholar 

  • Seidman MD, Shivapuja BG, Quirk WS (1993) The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngol Head Neck Surg 109:1052–1056.

    CAS  PubMed  Google Scholar 

  • Seidman MD, Bai U, Khan MJ, Quirk WS (1997) Mitochondrial DNA deletions associated with aging and presbyacusis. Arch Otolaryngol Head Neck Surg 123:1039–1045.

    CAS  PubMed  Google Scholar 

  • Sha SH, Qiu JH, Schacht J (2006) Aspirin to prevent gentamicin-induced hearing loss. N Engl J Med 354:1856–1857.

    Article  CAS  PubMed  Google Scholar 

  • Silman S, Gelfand SA, Silverman CA (1984) Late-onset auditory deprivation: effects of monaural versus binaural hearing aids. J Acoust Soc Am 76:1357–1362.

    Article  CAS  PubMed  Google Scholar 

  • Simerly RB, Chang C, Muramatsu M, Swanson LW (1990) Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 294:76–95.

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63.

    Article  CAS  PubMed  Google Scholar 

  • Someya S, Yamasoba T, Weindruch R, Prolla TA, Tanokura M (2007) Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiol Aging 28:1613–1622.

    Article  PubMed  Google Scholar 

  • Stenberg AE, Wang H, Sahlin L, Hultcrantz M (1999) Mapping of estrogen receptors alpha and beta in the inner ear of mouse and rat. Hear Res 136:29–34.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam M, Henderson D, Henselman L (1996) Toughening of the mammalian auditory system: spectral, temporal, and intensity effects. In: Salvi RJ, Henderson DH, Colletti V, Fiorino F (eds) Auditory Plasticity and Regeneration. New York: Thieme Medical Publishers, pp. 128–142.

    Google Scholar 

  • Swanson SJ, Dengerink HA (1988) Changes in pure-tone thresholds and temporary threshold shifts as a function of menstrual cycle and oral contraceptives. J Speech Hear Res 31:569–574.

    CAS  PubMed  Google Scholar 

  • Sweet RJ, Price JM, Henry KR (1988) Dietary restriction and presbyacusis: periods of restriction and auditory threshold losses in the CBA/J mouse. Audiology 27:305–312.

    Article  CAS  PubMed  Google Scholar 

  • Syka J (2002) Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 82:601–636.

    PubMed  Google Scholar 

  • Takumida M, Anniko M (2005) Radical scavengers: a remedy for presbyacusis. A pilot study. Acta Otolaryngol 125:1290–1295.

    Article  CAS  PubMed  Google Scholar 

  • Thompson SK, Zhu X Frisina RD (2006) Estrogen blockade reduces auditory feedback in CBA mice. Otolaryngol Head Neck Surg 135:100–105.

    Article  PubMed  Google Scholar 

  • Torre P III, Mattison JA, Fowler CG, Lane MA, Roth GS, Ingram DK (2004) Assessment of auditory function in rhesus monkeys (Macaca mulatta): effects of age and calorie restriction. Neurobiol Aging 25:945–954.

    Article  PubMed  Google Scholar 

  • Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol 56:391–408.

    CAS  PubMed  Google Scholar 

  • Willott JF (1991) Aging and the Auditory System: Anatomy, Physiology, and Psychophysics. San Diego, CA: Singular Publishing Group.

    Google Scholar 

  • Willott JF (1996) Auditory system plasticity in the adult C57BL/6J mouse. In Salvi RJ, Henderson DH, Colletti V, Fiorino F (eds) Auditory Plasticity and Regeneration, New York: Thieme, pp. 297–316.

    Google Scholar 

  • Willott JF (1999) Neurogerontology: Aging and the Nervous System. New York: Springer.

    Google Scholar 

  • Willott JF (2006) Neural reorganization following age-related and slowly-developing hearing loss. In: Lomber SG, Eggermont JJ (eds) Reprogramming the Cerebral Cortex: Plasticity Following Central and Peripheral Lesions. New York: Oxford University Press, New York, pp. 182–193.

    Google Scholar 

  • Willott JF, Bross LS (1996) Morphological changes in the anteroventral cochlear nucleus that accompany sensorineural hearing loss in DBA/2J and C57BL/6J mice. Brain Res Dev Brain Res 91:218–226.

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Bross L (2004) Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middle-aged C57BL/6J mice: cochlear and central histology and sex differences. J Comp Neurol 472:358–370.

    Article  PubMed  Google Scholar 

  • Willott JF, Parham K, Hunter KP (1988) Response properties of inferior colliculus neurons in middle-aged C57BL/6J mice with presbycusis. Hear Res 37:15–27.

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Erway LC, Archer JR, Harrison D (1995) Genetics of age‑related hearing loss in mice: II. Strain differences and effects of caloric restriction on cochlear pathology and evoked response thresholds. Hear Res 88:143–155.

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Milbrandt JC, Bross LS, Caspary DM (1997) Glycine immunoreactivity and receptor binding in the cochlear nucleus of C57BL/6J and CBA/CaJ mice: effects of cochlear impairment and aging. J Comp Neurol 385:405–414.

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Turner JG, Sundin VS (2000) Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment. Hear Res 142:79–88.

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Hnath Chisolm T, Lister JJ (2001a) Modulation of presbycusis: current status and future directions. Audiol Neurootol 6:231–249.

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Sundin V, Jeskey J (2001b) Effects of an augmented acoustic environment on the mouse auditory system. In: Willott JF (ed) Handbook of Mouse Auditory Research: From Behavior to Molecular Biology. Boca Raton, FL: CRC Press, pp. 205–214.

    Chapter  Google Scholar 

  • Willott JF, VandenBosche J, Shimizu T, Ding DL, Salvi R (2006) Effects of exposing gonadectomized and intact C57BL/6J mice to a high-frequency augmented acoustic environment: auditory brainstem response thresholds and cytocochleograms. Hear Res 221:73–81.

    Article  PubMed  Google Scholar 

  • Willott JF, VandenBosche J, Shimizu T, Ding D, Salvi R (2008) Effects of exposing C57BL/6J mice to high- and low-frequency augmented acoustic environments; auditory brainstem response thresholds, cytocochleograms, anterior cochlear nucleus morphology and the role of gonadal hormones. Hear Res 235:60–71.

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Perez E, Cutright J, Liu R, He Z, Day AL, Simpkins JW (2002) Testosterone increases neurotoxicity of glutamate in vitro and ischemia-reperfusion injury in an animal model. J Appl Physiol 92:195–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants R01 AG 07554 (to JFW) and P01 AG 025164 (to JS) from the National Institute on Aging, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Willott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willott, J.F., Schacht, J. (2010). Interventions and Future Therapies: Lessons from Animal Models. In: Gordon-Salant, S., Frisina, R., Popper, A., Fay, R. (eds) The Aging Auditory System. Springer Handbook of Auditory Research, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0993-0_10

Download citation

Publish with us

Policies and ethics