Skip to main content

Microtubule Motor Proteins in the Eukaryotic Green Lineage: Functions and Regulation

  • Chapter
  • First Online:
Book cover The Plant Cytoskeleton

Part of the book series: Advances in Plant Biology ((AIPB,volume 2))

Abstract

Kinesins and dyneins are two superfamilies of microtubule motor proteins that regulate many diverse fundamental cellular and developmental processes including cell shape, cell division and intracellular transport as well as spatial and temporal organization of molecules and organelles within the eukaryotic cells. These motor proteins use chemical energy from ATP to move unidirectionally using microtubules as roadways or to regulate microtubule dynamics. This review focuses on a comparative analysis of kinesins in eukaryotes, especially in the green lineage and their roles in plants. Comprehensive comparative analysis of kinesins among completed genome sequences of animal and several photosynthetic eukaryotes ranging from algae to monocots revealed considerable expansion of kinesins in flowering plants. Much of this expansion is due to an increase in members of two families (Kinesin-7 and Kinesin-14). Of the fourteen recognized families of kinesins in eukaryotes, members of four families are not found in flowering plants. However, a group of plant-specific kinesins does not fall into any of the recognized families, and some plant kinesins form plant-specific clades inside of their respective families. Some known domains are found exclusively either in plant and animal lineages, suggesting their functional specialization. Arabidopsis has the highest number of kinesins of any known multicellular eukaryotes, including humans, with a total of 61 kinesins. Although the processes regulated by many plant kinesins are yet to be discovered, functions of some kinesins have been elucidated in recent years using cell biological, molecular and genetic approaches and these are discussed briefly here. In addition, insights into regulatory mechanisms of a unique plant Ca2+/CaM-interacting motor called kinesin-like calmodulin-binding protein (KCBP) obtained through biochemical assays and crystal structure studies of its motor domain alone and as a complex with a calcium-binding protein are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Ghany SE, Day IS, Simmons MP, Kugrens P, Reddy AS (2005) Origin and evolution of Kinesin-like calmodulin-binding protein. Plant Physiol 138:1711–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abdel-Ghany SE, Reddy ASN (2000) A novel calcium/calmodulin-regulated kinesin-like protein is highly conserved between monocots and dicots. DNA Cell Biol 19:567–578

    Article  CAS  PubMed  Google Scholar 

  3. Ambrose JC, Cyr R (2007) The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19:226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asada T, Kuriyama R, Shibaoka H (1997) TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci 110:179–189

    Article  CAS  PubMed  Google Scholar 

  5. Bannigan A, Scheible WR, Lukowitz W, Fagerstrom C, Wadsworth P, Somerville C, Baskin TI (2007) A conserved role for kinesin-5 in plant mitosis. J Cell Sci 120:2819–2827

    Article  CAS  PubMed  Google Scholar 

  6. Banuelos S, Saraste M, Carugo KD (1998) Structural comparisons of calponin homology domains: implications for actin binding. Structure 6:1419–1431

    Article  CAS  PubMed  Google Scholar 

  7. Bowser J, Reddy ASN (1997) Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J 12:1429–1438

    Article  CAS  PubMed  Google Scholar 

  8. Chen C, Marcus A, Li W, Hu Y, Calzada JP, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129:2401–2409

    Article  CAS  PubMed  Google Scholar 

  9. Day IS, Miller C, Golovkin M, Reddy ASN (2000) Interaction of a kinesin-like calmodulin-binding protein with a protein kinase. J Biol Chem 275:13737–13745

    Article  CAS  PubMed  Google Scholar 

  10. Deavours BE, Reddy ASN, Walker RA (1998) Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin- binding protein. Cell Motil Cytoskeleton 40:408–416

    Article  CAS  PubMed  Google Scholar 

  11. DeVeylder L, Segers G, Glab N, Van Montagu M, Inze D (1997) Identification of proteins interacting with the Arabidopsis Cdc2aAt protein. J Exp Bot 48:2114–2114

    Google Scholar 

  12. Folkers U, Berger J, Hulskamp M (1997) Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. Development 124:3779–3786

    Article  CAS  PubMed  Google Scholar 

  13. Frey N, Klotz J, Nick P (2009) Dynamic bridges–a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol 50:1493–1506

    Article  CAS  PubMed  Google Scholar 

  14. Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88:1089–1118

    Article  CAS  PubMed  Google Scholar 

  15. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Article  CAS  PubMed  Google Scholar 

  16. Hiwatashi Y, Obara M, Sato Y, Fujita T, Murata T, Hasebe M (2008) Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. Plant Cell 20:3094–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hulskamp M (2000) How plants split hairs. Curr Biol 10:R308–R310

    Article  CAS  PubMed  Google Scholar 

  18. Itoh R, Fujiwara M, Yoshida S (2001) Kinesin-related proteins with a mitochondrial targeting signal. Plant Physiol 127:724–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45:83–100

    Article  CAS  PubMed  Google Scholar 

  20. Kao Y-L, Deavours BE, Phelps KK, Walker R, Reddy ASN (2000) Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca2+/calmodulin. Biochem Biophys Res Commun 267:201–207

    Article  CAS  PubMed  Google Scholar 

  21. King SM (2000) The dynein microtubule motor. Biochem Biophys Acta 1496:60–75

    Article  CAS  PubMed  Google Scholar 

  22. Kong L-J, Hanley-Bowdoin L (2002) A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infecion. Plant Cell 14:1817–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krishnakumar S, Oppenheimer DG (1999) Extragenic suppressors of the Arabidopsis zwi-3 mutation identify new genes that function in trichome branch formation and pollen tube growth. Development 126:3079–3088

    Article  CAS  PubMed  Google Scholar 

  24. Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lai C, Xiong J, Li X, Qin X (2009) A 43-bp A/T-rich element upstream of the kinesin gene AtKP1 promoter functions as a silencer in Arabidopsis. Plant Cell Rep 28:851–860

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LSB, Goodson HV, Hirokawa N, Howard J, Malmerg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy ASN, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lawrence CJ, Morrie NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    Article  CAS  PubMed  Google Scholar 

  28. Lee YR, Li Y, Liu B (2007) Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis. Plant Cell 19:2595–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee Y-RJ, Liu B (2000) Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr Biol 10:797–800

    Article  CAS  PubMed  Google Scholar 

  30. Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leinweber BD, Leavis PC, Grabarek Z, Wang CL, Morgan KG (1999) Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins. Biochem J 344:117–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li XY, Wang HQ, Xu T, Cao QH, Ren DT, Liu GQ (2007) Molecular cloning, expression and biochemical property analysis of AtKP1, a kinesin gene from Arabidopsis thaliana. Chin Sci Bull 52:1339–1346

    Article  Google Scholar 

  33. Lu L, Lee YR, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo D, Oppenheimer DG (1999) Genetic control of trichome branch number in Arabidopsis: the roles of FURCA loci. Development 126:5547–5557

    Article  CAS  PubMed  Google Scholar 

  35. Marcus AI, Ambrose JC, Blickley L, Hancock WO, Cyr RJ (2002) Arabidopsis thaliana protein, ATK1, is a minus-end directed kinesin that exhibits non-processive movement. Cell Motil Cytoskeleton 52:144–150

    Article  CAS  PubMed  Google Scholar 

  36. Marcus AI, Li W, Ma H, Cyr RJ (2003) A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol Biol Cell 14:1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    Article  CAS  PubMed  Google Scholar 

  38. Muller S, Han S, Smith LG (2006) Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr Biol 16:888–894

    Article  PubMed  CAS  Google Scholar 

  39. Narasimhulu SB, Kao Y-L, Reddy ASN (1997) Interaction of Arabidopsis kinesin-like calmodulin-binding protein with tubulin subunits: modulation by Ca2+-calmodulin. Plant J 12:1139–1149

    Article  CAS  PubMed  Google Scholar 

  40. Narasimhulu SB, Reddy ASN (1998) Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin-binding protein. Plant Cell 10:957–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99

    Article  CAS  PubMed  Google Scholar 

  42. Oh SA, Bourdon V, Das ‘Pal M, Dickinson H, Twell D (2008) Arabidopsis kinesins HINKEL and TETRASPORE act redundantly to control cell plate expansion during cytokinesis in the male gametophyte. Mol Plant 1:794–799

    Article  CAS  PubMed  Google Scholar 

  43. Oppenheimer DG, Pollock MA, Vacik J, Szymanski DB, Ericson B, Feldmann K, Marks D (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci USA 94:6261–6266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan R, Lee YR, Liu B (2004) Localization of two homologous Arabidopsis kinesin-related proteins in the phragmoplast. Planta 220:156–164

    Article  CAS  PubMed  Google Scholar 

  45. Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Quan L, Xiao R, Li W, Oh SA, Kong H, Ambrose JC, Malcos JL, Cyr R, Twell D, Ma H (2008) Functional divergence of the duplicated AtKIN14a and AtKIN14b genes: critical roles in Arabidopsis meiosis and gametophyte development. Plant J 53:1013–1026

    Article  CAS  PubMed  Google Scholar 

  47. Reddy ASN, Day IS (2000) The role of the cytoskeleton and a molecular motor in trichome morphogenesis. Trends Plant Sci 5:503–505

    Article  CAS  PubMed  Google Scholar 

  48. Reddy AS, Day IS (2001) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2:Research0024.0021–0024.0017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reddy ASN, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reddy VS, Day IS, Thomas T, Reddy AS (2004) KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell 16:185–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reddy VS, Reddy AS (2002) The calmodulin-binding domain from a plant kinesin functions as a modular domain in conferring Ca2+-CaM regulation to animal plus- and minus-end kinesins. J Biol Chem 277(50):48058–48065

    Article  CAS  PubMed  Google Scholar 

  52. Reddy VS, Reddy AS (2004) Developmental and cell-specific expression of ZWICHEL is regulated by the intron and exon sequences of its gene. Plant Mol Biol 54:273–293

    Article  CAS  PubMed  Google Scholar 

  53. Reddy ASN, Safadi F, Narasimhulu SB, Golovkin M, Hu X (1996) A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271:7052–7060

    Article  CAS  PubMed  Google Scholar 

  54. Reddy V, Safadi F, Zielinski RE, Reddy ASN (1999) Interaction of a kinesin-like protein with calmodulin isoforms from Arabidopsis. J Biol Chem 274:31727–31733

    Article  CAS  PubMed  Google Scholar 

  55. Richardson DN, Simmons MP, Reddy AS (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rogers GC, Hart CL, Wedman KP, Scholey JM (1999) Identification of kinesin-C, a calmodulin-binding carboxy-terminal kinesin in animal (Strongylocentrotus purpuratus) cells. J Mol Biol 294:1–8

    Article  CAS  PubMed  Google Scholar 

  57. Sablin EP, Kull FJ, Cooke R, Vale RD, Fletterick RJ (1996) Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380:555–559

    Article  CAS  PubMed  Google Scholar 

  58. Sakai T, van der Honing H, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO (2008) Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J 53:157–171

    Article  CAS  PubMed  Google Scholar 

  59. Sharp DJ (2000) Microtubule motors in mitosis. Nature 407:41–47

    Article  CAS  PubMed  Google Scholar 

  60. Smirnova E, Reddy ASN, Bowser J, Bajer AS (1997) Distribution of kinesin-like minus end-directed protein during mitosis in endosperm of higher plant Haemanthus. Mol Biol Cell 8:378a

    Google Scholar 

  61. Song H, Golovkin M, Reddy ASN, Endow SA (1997) In vitro motility of AtKCBP, a calmodulin-binding kinesin-like protein of Arabidopsis. Proc Natl Acad Sci USA 94:322–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jurgens G, Mayer U (2002) The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 12:153–158

    Article  CAS  PubMed  Google Scholar 

  63. Takahashi Y, Soyano T, Sasabe M, Machida Y (2004) A MAP kinase cascade that controls plant cytokinesis. J Biochem 136:127–132

    Article  CAS  PubMed  Google Scholar 

  64. Tamura K, Nakatani K, Mitsui H, Ohashi Y, Takahashi H (1999) Characterization of katD, a kinesin-like protein gene specifically expressed in floral tissues of Arabidopsis thaliana. Gene 230:23–32

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9:1199–1211

    Article  CAS  PubMed  Google Scholar 

  66. Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, Yonemure S, Tsukita S, Inoue J, Yamamoto T (1996) Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J 15:457–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vanstraelen M, Inze D, Geelen D (2006) Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11:167–175

    Article  CAS  PubMed  Google Scholar 

  68. Vanstraelen M, Torres Acosta JA, DeVeylder L, Inze D, Greelen D (2004) A plant-specific subclass of C-terminal kinesins contains a conserved a-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol 135:141–1429

    Article  Google Scholar 

  69. Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10:765–777

    Article  CAS  PubMed  Google Scholar 

  70. Vinogradova MV, Malanina GG, Reddy AS, Fletterick RJ (2009) Structure of the complex of a mitotic kinesin with its calcium binding regulator. Proc Natl Acad Sci USA 106:8175–8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vinogradova MV, Malanina GG, Reddy VS, Reddy AS, Fletterick RJ (2008) Structural dynamics of the microtubule binding and regulatory elements in the kinesin-like calmodulin binding protein. J Struct Biol 163:76–83

    Article  CAS  PubMed  Google Scholar 

  72. Vinogradova MV, Reddy VS, Reddy AS, Sablin EP, Fletterick RJ (2004) Crystal structure of kinesin regulated by Ca(2+)-calmodulin. J Biol Chem 279:23504–23509

    Article  CAS  PubMed  Google Scholar 

  73. Voss JW, Safadi F, Reddy ASN, Hepler PK (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12:979–990

    Article  Google Scholar 

  74. Walker KL, Muller S, Moss D, Ehrhardt DW, Smith LG (2007) Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr Biol 17:1827–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431:325–329

    Article  CAS  PubMed  Google Scholar 

  76. Wei L, Zhang W, Liu Z, Li Y (2009) AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol 9:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Wickstead B, Gull K (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8:1708–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xiong JY, Lai CX, Qu Z, Yang XY, Qin XH, Liu GQ (2009) Recruitment of AtWHY1 and AtWHY3 by a distal element upstream of the kinesin gene AtKP1 to mediate transcriptional repression. Plant Mol Biol 71:437–449

    Article  CAS  PubMed  Google Scholar 

  79. Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J 421:171–180

    Article  CAS  PubMed  Google Scholar 

  80. Xu T, Sun X, Jiang S, Ren D, Liu G (2007) Cotton GhKCH2, a plant-specific kinesin, is low-affinitive and nucleotide-independent as binding to microtubule. J Biochem Mol Biol 40:723–730

    CAS  PubMed  Google Scholar 

  81. Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily- associated protein of KIF3A/3B. Proc Natl Acad Sci USA 93:8443–8448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang G, Gao P, Zhang H, Huang S, Zheng ZL (2007) A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS One 2:e1074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Yang CY, Spielman M, Coles JP, Li Y, Ghelani S, Bourdon V, Brown RC, Lemmon BE, Scott RJ, Dickinson HG (2003) TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J 34:229–240

    Article  CAS  PubMed  Google Scholar 

  84. Zhong R, Burk DH, Morrison WH 3rd, Ye ZH (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. N. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reddy, A.S.N., Day, I.S. (2011). Microtubule Motor Proteins in the Eukaryotic Green Lineage: Functions and Regulation. In: Liu, B. (eds) The Plant Cytoskeleton. Advances in Plant Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0987-9_6

Download citation

Publish with us

Policies and ethics