Skip to main content

Microtubule Nucleation and Organization in Plant Cells

  • Chapter
  • First Online:
The Plant Cytoskeleton

Part of the book series: Advances in Plant Biology ((AIPB,volume 2))

  • 1125 Accesses

Abstract

Microtubule nucleation is the first step of microtubule formation. A unique property of land plant cells is the lack of a centrosome, which is the major site of microtubule nucleation in animal cells. Despite lacking centrosomes, land plant cells nevertheless form complex microtubule arrays and reorganize them rapidly during physiological responses or as a function of cell cycle progression. Although not packed into a focal structure like a centrosome, plant cells do contain centrosomal components, such as γ-tubulin complexes, that play a role in microtubule nucleation and organization. For various microtubule arrays formed by land plants, we review characterization of microtubule nucleation sites and of proteins involved in microtubule nucleation, paying particular attention to γ-tubulin. By discussing current knowledge, this review aims to elucidate promising future directions for research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  2. Asada T, Sonobe S, Shibaoka H (1991) Microtubule translocation in the cytokinetic apparatus of cultured tobacco cells. Nature 350:238–241

    CAS  Google Scholar 

  3. Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D (2008) Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20:2146–2159

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bajer AS, Mole-Bajer J (1986) Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. J Cell Biol 102:263–281

    CAS  PubMed  Google Scholar 

  5. Binarova P, Cenklova V, Prochazkova J, Doskocilova A, Volc J, Vrlik M, Bogre L (2006) γ-Tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18:1199–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown RC, Lemmon BE (1997) The quadripolar microtubule system in lower land plants. J Plant Res 110:93–106

    CAS  PubMed  Google Scholar 

  7. Chan J, Sambade A, Calder G, Lloyd C (2009) Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules. Plant Cell 21:2298–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cleary AL, Hardham AR (1988) Depolymerization of microtubule arrays in root-tip cells by oryzalin and their recovery with modified nucleation patterns. Can J Bot 66:2353–2366

    CAS  Google Scholar 

  9. Cyr RJ, Palevitz BA (1995) Organization of cortical microtubules in plant cells. Curr Opin Cell Biol 7:65–71

    CAS  PubMed  Google Scholar 

  10. Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Ann Rev Cell Dev Biol 13:83–117

    CAS  Google Scholar 

  11. Dhonukshe P, Gadella TW Jr (2003) Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15:597–611

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dixit R, Cyr R (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16:3274–3284

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Drykova D, Cenklova V, Sulimenko V, Volc J, Draber P, Binarova P (2003) Plant γ-tubulin interacts with αβ-tubulin dimers and forms membrane-associated complexes. Plant Cell 15:465–480

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    CAS  PubMed  Google Scholar 

  15. Falconer MM, Donaldson G, Seagull RW (1988) MTOCs in higher-plant cells – an immunofluorescent study of microtubule assembly sites following depolymerization by APM. Protoplasma 144:46–55

    Google Scholar 

  16. Goshima G, Kimura A (2010) New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr Opin Cell Biol 22:44–49

    CAS  PubMed  Google Scholar 

  17. Graham LE, Kaneko Y (1991) Subcellular structures of relevance to the origin of land plants (embryophytes) from green-algae. Crit Rev Plant Sci 10:323–342

    Google Scholar 

  18. Groen AC, Maresca TJ, Gatlin JC, Salmon ED, Mitchison TJ (2009) Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. Mol Biol Cell 20:2766–2773

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gunning BES (1982) The cytokinetic apparatus: Its development and spatial regulation. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic, London, pp 229–292

    Google Scholar 

  20. Hasezawa S, Marc J, Palevitz BA (1991) Microtubule reorganization during the cell-cycle in synchronized BY-2 tobacco suspensions. Cell Motil Cytoskeleton 18:94–106

    CAS  Google Scholar 

  21. Hogetsu T (1986) Re-formation and ordering of wall microtubules in Spirogyra cells. Plant Cell Physiol 28:875–883

    Google Scholar 

  22. Hotta T, Haraguchi T, Mizuno K (2007) A novel function of plant histone H1: microtubule nucleation and continuous plus end association. Cell Struct Funct 32:79–87

    CAS  PubMed  Google Scholar 

  23. Jaspersen SL, Winey M (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20:1–28

    CAS  PubMed  Google Scholar 

  24. Job D, Valiron O, Oakley B (2003) Microtubule nucleation. Curr Opin Cell Biol 15:111–117

    CAS  PubMed  Google Scholar 

  25. Johnson KA, Borisy GG (1977) Kinetic analysis of microtubule self-assembly in vitro. J Mol Biol 117:1–31

    CAS  PubMed  Google Scholar 

  26. Jurgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281–299

    PubMed  Google Scholar 

  27. Karsenti E, Vernos I (2001) The mitotic spindle: a self-made machine. Science 294:543–547

    CAS  PubMed  Google Scholar 

  28. Kong Z, Hotta T, Lee J, Horio T, Liu B (2010) The γ-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. Plant Cell 22:191–204

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lambert AM (1993) Microtubule-organizing centers in higher plants. Curr Opin Cell Biol 5:116–122

    CAS  PubMed  Google Scholar 

  30. Lee YR, Giang HM, Liu B (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13:2427–2439

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) γ-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu B, Marc J, Joshi HC, Palevitz BA (1993) A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228

    CAS  PubMed  Google Scholar 

  33. Luders J, Patel UK, Stearns T (2006) GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 8:137–147

    PubMed  Google Scholar 

  34. Luders J, Stearns T (2007) Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol 8:161–167

    PubMed  Google Scholar 

  35. Marc J, Mineyuki Y, Palevitz BA (1989) A planar microtubule organizing zone in guard cells of Allium – Experimental depolymerization and reassembly of microtubules. Planta 179:530–540

    CAS  PubMed  Google Scholar 

  36. Mineyuki Y (1999) The preprophase band of microtubules: Its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187(187):1–49

    Google Scholar 

  37. Mineyuki Y (2007) Plant microtubule studies: past and present. J Plant Res 120:45–51

    CAS  PubMed  Google Scholar 

  38. Motegi F, Velarde NV, Piano F, Sugimoto A (2006) Two phases of astral microtubule activity during cytokinesis in C. elegans embryos. Dev Cell 10:509–520

    CAS  PubMed  Google Scholar 

  39. Motose H, Tominaga R, Wada T, Sugiyama M, Watanabe Y (2008) A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. Plant J 54:829–844

    CAS  PubMed  Google Scholar 

  40. Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat Cell Biol 7:961–968

    CAS  PubMed  Google Scholar 

  41. Murata T, Hasebe M (2007) Microtubule-dependent microtubule nucleation in plant cells. J Plant Res 120:73-78

    CAS  PubMed  Google Scholar 

  42. Murata T, Tanahashi T, Nishiyama T, Yamaguchi K, Hasebe M (2007) How do plants organize microtubules without a centrosome? J Integr Plant Biol 49:1154–1163

    Google Scholar 

  43. Murata T, Wada M (1991) Re-formation of the preprophase band after cold-Induced depolymerization of microtubules in Adiantum protonemata. Plant Cell Physiol 32:1145–1151

    CAS  Google Scholar 

  44. Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122:2208–2217

    CAS  PubMed  Google Scholar 

  45. Oegema K, Wiese C, Martin OC, Milligan RA, Iwamatsu A, Mitchison TJ, Zheng Y (1999) Characterization of two related Drosophila gamma-tubulin complexes that differ in their ability to nucleate microtubules. J Cell Biol 144:721–733

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    CAS  PubMed  Google Scholar 

  47. Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC, Guerche P, Bouchez D (2006) Gamma-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–1425

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pickett-Heaps JD (1969) The evolution of the mitotic apparatus: an attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios 3:257–280

    Google Scholar 

  49. Pickett-Heaps JD, Northcote DH (1966) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci 1:109–120

    CAS  PubMed  Google Scholar 

  50. Roig J, Groen A, Caldwell J, Avruch J (2005) Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly. Mol Biol Cell 16:4827–4840

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Seltzer V, Janski N, Canaday J, Herzog E, Erhardt M, Evrard JL, Schmit AC (2007) Arabidopsis GCP2 and GCP3 are part of a soluble gamma-tubulin complex and have nuclear envelope targeting domains. Plant J 52:322–331

    CAS  PubMed  Google Scholar 

  52. Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718

    CAS  PubMed  Google Scholar 

  53. Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa K, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyuki Y (2004) Gamma-tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Smirnova EA, Bajer AS (1992) Spindle poles in higher plant mitosis. Cell Motil Cytoskeleton 23:1–7

    CAS  PubMed  Google Scholar 

  55. Smirnova EA, Bajer AS (1994) Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil Cytoskeleton 27:219–233

    CAS  PubMed  Google Scholar 

  56. Smirnova EA, Bajer AS (1998) Early stages of spindle formation and independence of chromosome and microtubule cycles in Haemanthus endosperm. Cell Motil Cytoskeleton 40:22–37

    CAS  PubMed  Google Scholar 

  57. Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2:33–39

    CAS  PubMed  Google Scholar 

  58. Soga K, Kotake T, Wakabayashi K, Kamisaka S, Hoson T (2008) Transient increase in the transcript levels of gamma-tubulin complex genes during reorientation of cortical microtubules by gravity in azuki bean (Vigna angularis) epicotyls. J Plant Res 121:493–498

    CAS  PubMed  Google Scholar 

  59. Staehelin LA, Hepler PK (1996) Cytokinesis in higher plants. Cell 84:821–824

    CAS  PubMed  Google Scholar 

  60. Stoppin V, Vantard M, Schmit AC, Lambert AM (1994) Isolated plant nuclei nucleate microtubule assembly – the nuclear-surface in higher-plants has centrosome-like activity. Plant Cell 6:1099–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Stoppin-Mellet V, Peter C, Lambert AM (2000) Distribution of gamma-tubulin in higher plant cells: Cytosolic gamma-tubulin is part of high molecular weight complexes. Plant Biol 2:290–296

    CAS  Google Scholar 

  62. Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375:676–677

    CAS  Google Scholar 

  63. Vantard M, Levilliers N, Hill AM, Adoutte A, Lambert AM (1990) Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. Proc Natl Acad Sci USA 87:8825–8829

    CAS  PubMed  Google Scholar 

  64. Verollet C, Colombie N, Daubon T, Bourbon HM, Wright M, Raynaud-Messina B (2006) Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation. J Cell Biol 172:517–528

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vos JW, Pieuchot L, Evrard JL, Janski N, Bergdoll M, de Ronde D, Perez LH, Sardon T, Vernos I, Schmit AC (2008) The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. Plant Cell 20:2783–2797

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Voter WA, Erickson HP (1984) The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J Biol Chem 259:10430–10438

    CAS  PubMed  Google Scholar 

  67. Wadsworth P, Khodjakov A (2004) E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14:413–419

    CAS  PubMed  Google Scholar 

  68. Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115:1345–1354

    CAS  PubMed  Google Scholar 

  69. Wasteneys GO, Williamson RE (1989) Reassembly of microtubules in Nitella tasmanica – assembly of cortical microtubules in branching clusters and its relevance to steady-state microtubule assembly. J Cell Sci 93:705–714

    Google Scholar 

  70. Wick SM, Duniec J (1983) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol 97:235–243

    CAS  PubMed  Google Scholar 

  71. Wick SM, Seagull RW, Osborn M, Weber K, Gunning BE (1981) Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells. J Cell Biol 89:685–690

    CAS  PubMed  Google Scholar 

  72. Wiese C, Zheng Y (2006) Microtubule nucleation: γ-tubulin and beyond. J Cell Sci 119:4143–4153

    CAS  PubMed  Google Scholar 

  73. Zeng CJT, Lee YRJ, Liu B (2009) The WD40 Repeat Protein NEDD1 Functions in Microtubule Organization during Cell Division in Arabidopsis thaliana. Plant Cell 21:1129–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng Y, Jung MK, Oakley BR (1991) Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65:817–823

    CAS  PubMed  Google Scholar 

  75. Zheng Y, Wong ML, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378:578–583

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murata, T., Hasebe, M. (2011). Microtubule Nucleation and Organization in Plant Cells. In: Liu, B. (eds) The Plant Cytoskeleton. Advances in Plant Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0987-9_4

Download citation

Publish with us

Policies and ethics