NOD-Like Receptors—Pivotal Guardians of the Immunological Integrity of Barrier Organs

  • Philip Rosenstiel
  • Stefan Schreiber
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 653)


NOD-like receptors (NLRs) exert pivotal roles in innate immunity as sensors of exogenous or endogenous cellular danger signals. The NLR protein family has a characteristic domain architecture comprising a central nucleotide binding and oligomerization domain (NOD), an N-terminal effector binding domain and C-terminal leucine-rich repeats (LRRs). Mutations in NLR genes are genetically associated with a number of chronic inflammatory diseases of barrier organs. In this chapter, we focus on the influence of NLR regulation and function in the complex pathophysiology of mucosal homeostasis. The understanding of NLR biology may guide our future understanding of how the interaction between the human genome and the metagenome of transient and resident microbiota precipitates into chronic inflammatory disorders, such as Crohn’s disease or atopy.


Muramyl Dipeptide Barrier Organ Caspase Recruitment Domain Blau Syndrome Neuronal Apoptosis Inhibitor Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schreiber S, Rosenstiel P, Albrecht M et al. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 2005; 6:376–388.CrossRefPubMedGoogle Scholar
  2. 2.
    Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucinc-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411:599–603.CrossRefPubMedGoogle Scholar
  3. 3.
    Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411:603–606.CrossRefPubMedGoogle Scholar
  4. 4.
    Hampe J, Cuthbert A, Croucher PJ et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 2001; 357:1925–1928.CrossRefPubMedGoogle Scholar
  5. 5.
    Hoffman HM, Mueller JL, Broide DH et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 2001; 29:301–305.CrossRefPubMedGoogle Scholar
  6. 6.
    Kanazawa N, Okafuji I, Kambe N et al. Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: Common genetic etiology with Blau syndrome. Blood 2005; 105:1195–1197.CrossRefPubMedGoogle Scholar
  7. 7.
    Feldmann J, Prieur AM, Quartier P et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 2002; 71:198–203.CrossRefPubMedGoogle Scholar
  8. 8.
    Aksentijevich I, Nowak M, Mallah M et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): A new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 2002; 46:3340–3348.CrossRefPubMedGoogle Scholar
  9. 9.
    Inohara, Chamaillard, McDonald C et al. NOD-LRR proteins: Role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 2005; 74:355–383.CrossRefPubMedGoogle Scholar
  10. 10.
    Ogura Y, Inohara N, Benito A et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 2001; 276:4812–4818.CrossRefPubMedGoogle Scholar
  11. 11.
    Inohara N, Koseki T, del Peso L et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 1999; 274:14560–14567.CrossRefPubMedGoogle Scholar
  12. 12.
    Inohara N, Koseki T, Lin J et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. J Biol Chem 2000; 275:27823–27831.PubMedGoogle Scholar
  13. 13.
    Abbott DW, Wilkins A, Asara JM et al. The Crohn’s disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr Biol 2004; 14:2217–2227.CrossRefPubMedGoogle Scholar
  14. 14.
    Azevedo C, Sadanandom A, Kitagawa K et al. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 2002; 295:2073–2076.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang CW, González-Lamothe R, Ewan RA et al. The E3 ubiquitin ligase activity of arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 2006; 18:1084–1098.CrossRefPubMedGoogle Scholar
  16. 16.
    Takahashi A, Casais C, Ichimura K et al. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 2003; 100:11777–11782.CrossRefPubMedGoogle Scholar
  17. 17.
    Hahn JS. Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett 2005; 579:4513–4519.CrossRefPubMedGoogle Scholar
  18. 18.
    Janssens S, Burns K, Tschopp J et al. Regulation of interleukin-1-and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol 2002; 12:467–471.CrossRefPubMedGoogle Scholar
  19. 19.
    Burns K, Janssens S, Brissoni B et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 2003; 197:263–268.CrossRefPubMedGoogle Scholar
  20. 20.
    Janssens S, Burns K, Vercammen E et al. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB-and AP-1-dependent gene expression. FEBS Lett 2003; 548:103–107.CrossRefPubMedGoogle Scholar
  21. 21.
    Rosenstiel P, Huse K, Till A et al. A short isoform of NOD2/CARD15, NOD2-S, is an endogenous inhibitor of NOD2/receptor-interacting protein kinase 2-induced signaling pathways. Proc Natl Acad Sci USA 2006; 103:3280–3285.CrossRefPubMedGoogle Scholar
  22. 22.
    Kikuchi-Yanoshita R, Taketomi Y, Koga K et al. Induction of PYPAF1 during in vitro maturation of mouse mast cells. J Biochem (Tokyo) 2003; 134:699–709.Google Scholar
  23. 23.
    O’Connor Jr W, Harton JA, Zhu X et al. Cutting edge: CIAS1/cryopyrin/PYPAF1/NALP3/ CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties. J Immunol 2003; 171:6329–6333.PubMedGoogle Scholar
  24. 24.
    Dinesh-Kumar SP, Baker BJ. Alternatively spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 2000; 97:1908–1913.CrossRefPubMedGoogle Scholar
  25. 25.
    Kobe B, Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 1995; 374:183–186.CrossRefPubMedGoogle Scholar
  26. 26.
    Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 2001; 11:725–732.CrossRefPubMedGoogle Scholar
  27. 27.
    Chamaillard M, Hashimoto M, Horie Y et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003; 4:702–707.CrossRefPubMedGoogle Scholar
  28. 28.
    Girardin SE, Boneca IG, Carneiro LA et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 2003; 300:1584–1587.CrossRefPubMedGoogle Scholar
  29. 29.
    Inohara N, Ogura Y, Fontalba A et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: Implications for Crohn’s disease. J Biol Chem 2003; 278(8):5509–5512.CrossRefPubMedGoogle Scholar
  30. 30.
    Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278:8869–8872.CrossRefPubMedGoogle Scholar
  31. 31.
    Tschopp J, Martinon F, Burns K. NALPs: A novel protein family involved in inflammation. Nat Rev Mol Cell Biol 2003; 4:95–104.CrossRefPubMedGoogle Scholar
  32. 32.
    Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004; 116:205–219.CrossRefPubMedGoogle Scholar
  33. 33.
    Albrecht M, Domingues FS, Schreiber S et al. Structural localization of disease-associated sequence variations in the NACHT and LRR domains of PYPAF1 and NOD2. FEBS Lett 2003; 554:520–528.CrossRefPubMedGoogle Scholar
  34. 34.
    Rairdan GJ, Moffett P. Distinct Domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 2006.Google Scholar
  35. 35.
    Tanabe T, Chamaillard M, Ogura Y et al. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J 2004; 23:1587–1597.CrossRefPubMedGoogle Scholar
  36. 36.
    Weichart D, Gobom J, Klopfleisch S et al. Analysis of NOD2-mediated proteome response to muramyl-dipeptide in HEK293 cells. J Biol Chem 2006; 281(4):2380–2389.CrossRefPubMedGoogle Scholar
  37. 37.
    Girardin SE, Jéhanno M, Mengin-Lecreuix D et al. Identification of the critical residues involved in peptidoglycan detection by Nod1. J Biol Chem 2005; 280:38648–38656.CrossRefPubMedGoogle Scholar
  38. 38.
    Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347:911–920.CrossRefPubMedGoogle Scholar
  39. 39.
    Crohn BB, Ginzburg L, Oppenheimer GD. Landmark article Oct 15, 1932. Regional ileitis: A pathological and clinical entity. JAMA 1984; 251:73–79.CrossRefPubMedGoogle Scholar
  40. 40.
    Binder V. Epidemiology of IBD during the twentieth century: An integrated view. Best Pract Res Clin Gastroenterol 2004; 18:463–479.CrossRefPubMedGoogle Scholar
  41. 41.
    Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347:417–429.CrossRefPubMedGoogle Scholar
  42. 42.
    Bonen DK, Ogura Y, Nicolae DL et al. Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 2003; 124:140–146.CrossRefPubMedGoogle Scholar
  43. 43.
    Netea MG, Kullberg BJ, de Jong DJ et al. NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: Implications for Crohn’s disease. Eur J Immunol 2004; 34:2052–2059.CrossRefPubMedGoogle Scholar
  44. 44.
    van Heel DA, Ghosh S, Butler M et al. Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn’s disease. Lancet 2005; 365:1794–1796.CrossRefPubMedGoogle Scholar
  45. 45.
    Maeda S, Hsu LC, Liu H et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 2005; 307:734–738.CrossRefPubMedGoogle Scholar
  46. 46.
    Jabs DA, Houk JL, Bias WB et al. Familial granulomatous synovitis, uveitis, and cranial neuropathies. Am J Med 1985; 78:801–804.CrossRefPubMedGoogle Scholar
  47. 47.
    Miceli-Richard C, Lesage S, Rybojad M et al. CARD15 mutations in Blau syndrome. Nat Genet 2001; 29:19–20.CrossRefPubMedGoogle Scholar
  48. 48.
    Chamaillard M, Philpott D, Girardin SE et al. Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc Natl Acad Sci USA 2003; 100:3455–3460.CrossRefPubMedGoogle Scholar
  49. 49.
    Rosé CD, Doyle TM, McIlvain-Simpson G et al. Blau syndrome mutation of CARD15/NOD2 in sporadic early onset granulomatous arthritis. J Rheumatol 2005; 32:373–375.PubMedGoogle Scholar
  50. 50.
    Kay AB. Allergy and allergic diseases. First of two parts. N Engl J Med 2001; 344:30–37.CrossRefPubMedGoogle Scholar
  51. 51.
    Kabesch M, Peters W, Carr D et al. Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. J Allergy Clin Immunol 2003; 111:813–817.CrossRefPubMedGoogle Scholar
  52. 52.
    Weidinger S, Klopp N, Rümmier L et al. Association of CARD15 polymorphisms with atopy-related traits in a population-based cohort of Caucasian adults. Clin Exp Allergy 2005; 35:866–872.CrossRefPubMedGoogle Scholar
  53. 53.
    Kurzawski G, Suchy J, Kladny J et al. The NOD2 3020insC mutation and the risk of colorectal cancer. Cancer Res 2004; 64:1604–1606.CrossRefPubMedGoogle Scholar
  54. 54.
    Alhopuro P, Ahvenainen T, Mecklin JP et al. NOD2 3020insC alone is not sufficient for colorectal cancer predisposition. Cancer Res 2004; 64:7245–7247.CrossRefPubMedGoogle Scholar
  55. 55.
    Papaconstantinou I, Theodoropoulos G, Gazouli M et al. Association between mutations in the CARD15/NOD2 gene and colorectal cancer in a Greek population. Int J Cancer 2005; 114:433–435.CrossRefPubMedGoogle Scholar
  56. 56.
    Huzarski T, Lener M, Domagala W et al. The 3020insC allele of NOD2 predisposes to early-onset breast cancer. Breast Cancer Res Treat 2005; 89:91–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Lener MR, Oszutowska D, Castaneda J et al. Prevalence of the NOD2 3020insC mutation in aggregations of breast and lung cancer. Breast Cancer Res Treat 2006; 95(2): 141–145.CrossRefPubMedGoogle Scholar
  58. 58.
    Rosenstiel P, Hellmig S, Hampe J et al. Influence of polymorphisms in the NOD1/CARD4 and NOD2/CARD15 genes on the clinical outcome of H. pylori infection. Cell Microbiol 2006; 8(7):1188–1198.CrossRefPubMedGoogle Scholar
  59. 59.
    Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: Balancing life and death—a new approach to cancer therapy. J Clin Invest 2005; 115:2625–2632.CrossRefPubMedGoogle Scholar
  60. 60.
    da Silva Correia J, Miranda Y, Austin-Brown N et al. Nod1-dependent control of tumor growth. Proc Natl Acad Sci USA 2006; 103:1840–1845.CrossRefPubMedGoogle Scholar
  61. 61.
    Zouali H, Lesage S, Merlin F et al. CARD4/NOD1 is not involved in inflammatory bowel disease. Gut 2003; 52:71–74.CrossRefPubMedGoogle Scholar
  62. 62.
    McGovern DP, Hysi P, Ahmad T et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 2005; 14:1245–1250.CrossRefPubMedGoogle Scholar
  63. 63.
    Hysi P, Kabesch M, Moffatt MF et al. NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 2005; 14:935–941.CrossRefPubMedGoogle Scholar
  64. 64.
    Braun-Fahrlander C. Environmental exposure to endotoxin and other microbial products and the decreased risk of childhood atopy: Evaluating developments since April 2002. Curr Opin Allergy Clin Immunol 2003; 3:325–329.CrossRefPubMedGoogle Scholar
  65. 65.
    Gewirtz AT. Intestinal epithelial toll-like receptors: To protect. And serve? Curr Pharm Des 2003; 9:1–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Jobin C. Intestinal epithelial cells and innate immunity in the intestine: Is CARD15/Nod2 another player? Gastroenterology 2003; 124:1145–1149.PubMedGoogle Scholar
  67. 67.
    Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000; 68:7010–7017.CrossRefPubMedGoogle Scholar
  68. 68.
    Abreu MT, Taylor KD, Lin YC et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 2002; 123:679–688.CrossRefPubMedGoogle Scholar
  69. 69.
    Hornef MW, Frisan T, Vandewalle A et al. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 2002; 195:559–570.CrossRefPubMedGoogle Scholar
  70. 70.
    Hisamatsu T, Suzuki M, Podolsky DK. Interferon-{gamma} Augments CARD4/NOD1 Gene and protein expression through interferon regulatory factor-1 in intestinal epithelial cells. J Biol Chem 2003; 278:32962–32968.CrossRefPubMedGoogle Scholar
  71. 71.
    Rosenstiel P, Fantini M, Bräutigam K et al. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD 15) gene in human intestinal epithelial cells. Gastroenterology 2003; 124:1001–1009.CrossRefPubMedGoogle Scholar
  72. 72.
    Croucher PJ, Mascheretti S, Hampe J et al. Haplotype structure and association to Crohn’s disease of CARD15 mutations in two ethnically divergent populations. Eur J Hum Genet 2003; 11:6–16.CrossRefPubMedGoogle Scholar
  73. 73.
    Akey JM, Zhang G, Zhang K et al. Interrogating a high-density SNP map for signatures of natural selection. Genome Res 2002; 12:1805–1814.CrossRefPubMedGoogle Scholar
  74. 74.
    Hisamatsu T, Suzuki M, Reinecker HC et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 2003; 124:993–1000.CrossRefPubMedGoogle Scholar
  75. 75.
    Wehkamp J, Harder J, Weichenthal M et al. NOD2 (CARD 15) mutations in Crohn’s disease are associated with diminished mucosal {alpha}-defensin expression. Gut 2004; 53:1658–1664.CrossRefPubMedGoogle Scholar
  76. 76.
    Weichart D, Gobom J, Klopfleisch S et al. Analysis of NOD2-mediated proteome response to muramyl dipeptide in HEK293 cells. J Biol Chem 2006; 281:2380–2389.CrossRefPubMedGoogle Scholar
  77. 77.
    Shin C, Manley JL. Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol 2004; 5:727–738.CrossRefPubMedGoogle Scholar
  78. 78.
    Dinesh-Kumar SP, Tham WH, Baker BJ. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci USA 2000; 97:14789–14794.CrossRefPubMedGoogle Scholar
  79. 79.
    Resch A, Xing Y, Modrek B et al. Assessing the impact of alternative splicing on domain interactions in the human proteome. J Proteome Res 2004; 3:76–83.CrossRefPubMedGoogle Scholar
  80. 80.
    Hiller M, Huse K, Szafranaski K et al. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat Genet 2004; 36:1255–1257.CrossRefPubMedGoogle Scholar
  81. 81.
    Hiller M, Huse K, Szafranski K et al. Phylogenetically widespread alternative splicing at unusual GYNGYN donors. Genome Biol 2006; 7:R65.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Philip Rosenstiel
    • 2
    • 3
  • Stefan Schreiber
    • 1
  1. 1.Institute for Clinical Molecular Biology, 1st Department of MedicineUniversity Hospital Schleswig-Holstein Campus KielKielGermany
  2. 2.Institute of Clinical Molecular BiologyChristian-Albrechts-University KielKielGermany
  3. 3.Max-Planck Institute for Molecular GeneticsBerlinGermany

Personalised recommendations