Lessons from the Fly: Pattern Recognition in Drosophila melanogaster

  • Subhamoy Pal
  • Louisa P. Wu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 653)


Drosophila have a variety of innate immune strategies for defending itself from infection, including humoral and cell mediated responses to invading microorganisms. At the front lines of these responses, are a diverse group of pattern recognition receptors that recognize pathogen associated molecular patterns. These patterns include bacterial lipopolysaccharides, peptidoglycans, and fungal β-1,3 glucans. Some of the receptors catalytically modify the pathogenic determinant, but all are responsible for direcdy facilitating a signaling event that results in an immune response. Some of these events require multiple pattern recognition receptors acting sequentially to activate a pathway. In some cases, a signaling pathway may be activated by a variety of different pathogens, through parallel receptors detecting different pathogenic determinants. In this chapter, we review what is known about pattern recognition receptors in Drosophila, and how those lessons may be applied towards a broader understanding of immunity.


Down Syndrome Scavenger Receptor Pattern Recognition Receptor Recognition Protein Toll Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Medzhitov R, Janeway Jr C. Innate immunity. N Engl J Med 2000; 343(5):338–344.CrossRefPubMedGoogle Scholar
  2. 2.
    Adams MD, Celniker SE, Holt RA et al. The genome sequence of Drosophila melanogaster. Science 2000; 287(5461):2185–2195.CrossRefPubMedGoogle Scholar
  3. 3.
    Rubin GM, Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science 1982; 218(4570):348–353.CrossRefPubMedGoogle Scholar
  4. 4.
    Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 1998; 10(1):23–28.CrossRefPubMedGoogle Scholar
  5. 5.
    Braun A, Hoffmann JA, Meister M. Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes. Proc Natl Acad Sci USA 1998; 95(24): 14337–14342.CrossRefPubMedGoogle Scholar
  6. 6.
    Rizki RM, Rizki TM. Selective destruction of a host blood cell type by a parasitoid wasp. Proc Natl Acad Sci USA 1984; 81(19):6154–6158.CrossRefPubMedGoogle Scholar
  7. 7.
    Leclerc V, Pelte N, Chamy LE et al. Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep 2005.Google Scholar
  8. 8.
    Lanot R, Zachary D, Holder F et al. Postembryonic hematopoiesis in Drosophila. Dev Biol 2001; 230(2):243–257.CrossRefPubMedGoogle Scholar
  9. 9.
    Elrod-Erickson M, Mishra S, Schneider D. Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 2000; 10(13):781–784.CrossRefPubMedGoogle Scholar
  10. 10.
    Bulet P, Hetru C, Dimarcq JL et al. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 1999; 23(4–5):329–344.CrossRefPubMedGoogle Scholar
  11. 11.
    Meister M, Hetru C, Hoffmann JA. The antimicrobial host defense of Drosophila. Curr Top Microbiol Immunol 2000; 248:17–36.PubMedGoogle Scholar
  12. 12.
    Moore AJ, Beazley WD, Bibby MC et al. Antimicrobial activity of cecropins. J Antimicrob Chemother 1996; 37(6):1077–1089.CrossRefPubMedGoogle Scholar
  13. 13.
    De Gregorio E, Spellman PT, Tzou P et al. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 2002; 21(11):2568–2579.CrossRefPubMedGoogle Scholar
  14. 14.
    Khush RS, Leulier F, Lemaitre B. Drosophila immunity: Two paths to NF-kappaB. Trends Immunol 2001; 22(5):260–264.CrossRefPubMedGoogle Scholar
  15. 15.
    Lemaitre B, Nicolas E, Michaut L et al. The dorsoventral regulatory gene cassette spatzle/Toll/ cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86(6):973–983.CrossRefPubMedGoogle Scholar
  16. 16.
    Gobert V, Gottar M, Matskevich AA et al. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 2003; 302(5653):2126–2130.CrossRefPubMedGoogle Scholar
  17. 17.
    Choe KM, Werner T, Stoven S et al. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 2002; 296(5566):359–362.CrossRefPubMedGoogle Scholar
  18. 18.
    Choe KM, Lee H, Anderson KV. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc Natl Acad Sci USA 2005; 102(4):1122–1126.CrossRefPubMedGoogle Scholar
  19. 19.
    Werner T, Borge-Renberg K, Mellroth P et al. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J Biol Chem 2003; 278(29):26319–26322.CrossRefPubMedGoogle Scholar
  20. 20.
    Hedengren M, Asling B, Dushay MS et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 1999; 4(5):827–837.CrossRefPubMedGoogle Scholar
  21. 21.
    Leulier F, Rodriguez A, Khush RS et al. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep 2000; 1(4):353–358.CrossRefPubMedGoogle Scholar
  22. 22.
    Hedengren-Olcott M, Olcott MC, Mooney DT et al. Differential activation of the NF-kappaB-like factors Relish and Dif in Drosophila melanogaster by fungi and Gram-positive bacteria. J Biol Chem 2004; 279(20):21121–21127.CrossRefPubMedGoogle Scholar
  23. 23.
    Lau GW, Goumnerov BC, Walendziewicz CL et al. The Drosophila melanogaster toll pathway participates in resistance to infection by the Gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun 2003; 71(7):4059–4066.CrossRefPubMedGoogle Scholar
  24. 24.
    Zambon RA, Nandakumar M, Vakharia VN et al. The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci USA 2005; 102(20):7257–7262.CrossRefPubMedGoogle Scholar
  25. 25.
    Anderson KV, Nusslein-Volhard C. Information for the dorsal—ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 1984; 311(5983):223–227.CrossRefPubMedGoogle Scholar
  26. 26.
    Belvin MP, Anderson KV. A conserved signaling pathway: The Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 1996; 12:393–416.CrossRefPubMedGoogle Scholar
  27. 27.
    O’Neill LA, Greene C. Signal transduction pathways activated by the IL-1 receptor family: Ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol 1998; 63(6):650–657.PubMedGoogle Scholar
  28. 28.
    Barton GM, Medzhitov R. Toll-like receptors and their ligands. Curr Top Microbiol Immunol 2002; 270:81–92.PubMedGoogle Scholar
  29. 29.
    Akashi S, Ogata H, Kirikae F et al. Regulatory roles for CD14 and phosphatidylinositol in the signaling via toll-like receptor 4-MD-2. Biochem Biophys Res Commun 2000; 268(1):172–177.CrossRefPubMedGoogle Scholar
  30. 30.
    Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 2000; 97(25):13766–13771.CrossRefPubMedGoogle Scholar
  31. 31.
    Smith KD, Andersen-Nissen E, Hayashi F et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003; 4(12):1247–1253.CrossRefPubMedGoogle Scholar
  32. 32.
    Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408(6813):740–745.CrossRefPubMedGoogle Scholar
  33. 33.
    Alexopoulou L, Holt AC, Medzhitov R et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413(6857):732–738.CrossRefPubMedGoogle Scholar
  34. 34.
    Barton GM, Medzhitov R. Linking Toll-like receptors to IFN-alpha/beta expression. Nat Immunol 2003; 4(5):432–433.CrossRefPubMedGoogle Scholar
  35. 35.
    Muzio M, Bosisio D, Polentarutti N et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: Selective expression of TLR3 in dendritic cells. J Immunol 2000; 164(11):5998–6004.PubMedGoogle Scholar
  36. 36.
    Tauszig-Delamasure S, Bilak H, Capovilla M et al. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol 2002; 3(1):91–97.CrossRefPubMedGoogle Scholar
  37. 37.
    Michel T, Reichhart JM, Hoffmann JA et al. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 2001; 414(6865):756–759.CrossRefPubMedGoogle Scholar
  38. 38.
    Filipe SR, Tomasz A, Ligoxygakis P. Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway. EMBO Rep 2005; 6(4):327–333.CrossRefPubMedGoogle Scholar
  39. 39.
    Pelte N, Robertson AS, Zou Z et al. Immune challenge induces N-terminal cleavage of the Drosophila serpin Necrotic. Insect Biochem Mol Biol 2006; 36(1):37–46.CrossRefPubMedGoogle Scholar
  40. 40.
    Seppo A, Matani P, Sharrow M et al. Induction of neuron-specific glycosylation by Tollo/Toll-8, a Drosophila Toll-like receptor expressed in nonneural cells. Development 2003; 130(7):1439–1448.CrossRefPubMedGoogle Scholar
  41. 41.
    Eldon E, Kooyer S, D’Evelyn D et al. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development 1994; 120(4):885–899.PubMedGoogle Scholar
  42. 42.
    De Gregorio E, Spellman PT, Rubin GM et al. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA 2001; 98(22):12590–12595.CrossRefPubMedGoogle Scholar
  43. 43.
    Irving P, Troxler L, Heuer TS et al. A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci USA 2001; 98(26):15119–15124.CrossRefPubMedGoogle Scholar
  44. 44.
    Ligoxygakis P, Bulet P, Reichhart JM. Critical evaluation of the role of the Toll-like receptor 18-Wheeler in the host defense of Drosophila. EMBO Rep 2002; 3(7):666–673.CrossRefPubMedGoogle Scholar
  45. 45.
    Williams MJ, Rodriguez A, Kimbrell DA et al. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J 1997; 16(20):6120–6130.CrossRefPubMedGoogle Scholar
  46. 46.
    Ooi JY, Yagi Y, Hu X et al. The Drosophila Toll-9 activates a constitutive antimicrobial defense. EMBO Rep 2002; 3(1):82–87.CrossRefPubMedGoogle Scholar
  47. 47.
    Bettencourt R, Tanji T, Yagi Y et al. Toll and Toll-9 in Drosophila innate immune response. J Endotoxin Res 2004; 10(4):261–268.PubMedGoogle Scholar
  48. 48.
    Schleifer KH, Kandier O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36(4):407–477.PubMedGoogle Scholar
  49. 49.
    Doyle RJ, dziarski R. The bacterial cell: Peptidoglycan. London: Academic Press, 2001.Google Scholar
  50. 50.
    Kang D, Liu G, Lundstrom A et al. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci USA 1998; 95(17):10078–10082.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu C, Gelius E, Liu G et al. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem 2000; 275(32):24490–24499.CrossRefPubMedGoogle Scholar
  52. 52.
    Christophides GK, Zdobnov E, Barillas-Mury C et al. Immunity-related genes and gene families in Anopheles gambiae. Science 2002; 298(5591):159–165.CrossRefPubMedGoogle Scholar
  53. 53.
    Dziarski R. Peptidoglycan recognition proteins (PGRPs). Mol Immunol 2004; 40(12):877–886.CrossRefPubMedGoogle Scholar
  54. 54.
    Liu C, Xu Z, Gupta D et al. Peptidoglycan recognition proteins: A novel family of four human innate immunity pattern recognition molecules. J Biol Chem 2001; 276(37):34686–34694.CrossRefPubMedGoogle Scholar
  55. 55.
    Werner T, Liu G, Kang D et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 2000; 97(25):13772–13777.CrossRefPubMedGoogle Scholar
  56. 56.
    Dziarski R. Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol Life Sci 2003; 60(9): 1793–1804.CrossRefPubMedGoogle Scholar
  57. 57.
    Tydell CC, Yount N, Tran D et al. Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J Biol Chem 2002; 277(22):19658–19664.CrossRefPubMedGoogle Scholar
  58. 58.
    Mellroth P, Karlsson J, Steiner H. A scavenger function for a Drosophila peptidoglycan recognition protein. J Biol Chem 2003; 278(9):7059–7064.CrossRefPubMedGoogle Scholar
  59. 59.
    Gottar M, Gobert V, Michel T et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 2002; 416(6881):640–644.CrossRefPubMedGoogle Scholar
  60. 60.
    Kaneko T, Goldman WE, Mellroth P et al. Monomeric and polymeric Gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 2004; 20(5):637–649.CrossRefPubMedGoogle Scholar
  61. 61.
    Ramet M, Manfruelli P, Pearson A et al. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 2002; 416(6881):644–648.CrossRefPubMedGoogle Scholar
  62. 62.
    Takehana A, Katsuyama T, Yano T et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 2002; 99(21):13705–13710.CrossRefPubMedGoogle Scholar
  63. 63.
    Takehana A, Yano T, Mita S et al. Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J 2004; 23(23):4690–4700.CrossRefPubMedGoogle Scholar
  64. 64.
    Bischoff V, Vignal C, Boneca IG et al. Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol 2004; 5(11):1175–1180.CrossRefPubMedGoogle Scholar
  65. 65.
    Lemaitre B. The road to Toll. Nat Rev Immunol 2004; 4(7):521–527.CrossRefPubMedGoogle Scholar
  66. 66.
    Leulier F, Parquet C, Pili-Floury S et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 2003; 4(5):478–484.CrossRefPubMedGoogle Scholar
  67. 67.
    Garver L, Wu J, Wu L. The peptidoglycan recognition protein PGRP-SCla is essential for toll signaling and phagocytosis of staphylococcus aureus in Drosophila. Proc Natl Acad Sci USA 2006; 103:660–665.CrossRefPubMedGoogle Scholar
  68. 68.
    Lee WJ, Lee JD, Kravchenko W et al. Purification and molecular cloning of an inducible Gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci USA 1996; 93(15):7888–7893.CrossRefPubMedGoogle Scholar
  69. 69.
    Medzhitov R, Janeway Jr C. Fly immunity: Great expectations. Genome Biol 2000; 1(1):REVIEWS106.Google Scholar
  70. 70.
    Pili-Floury S, Leulier F, Takahashi K et al. In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 2004; 279(13):12848–12853.CrossRefPubMedGoogle Scholar
  71. 71.
    Ferrandon D, Imler JL, Hoffmann JA. Sensing infection in Drosophila: Toll and beyond. Semin Immunol 2004; 16(1):43–53.CrossRefPubMedGoogle Scholar
  72. 72.
    Volanakis JE. Participation of C3 and its ligands in complement activation. Curr Top Microbiol Immunol 1990; 153:1–21.PubMedGoogle Scholar
  73. 73.
    Armstrong PB, Quigley JP. Limulus alpha 2-macroglobulin. First evidence in an invertebrate for a protein containing an internal thiol ester bond. Biochem J 1987; 248(3):703–707.PubMedGoogle Scholar
  74. 74.
    Lagueux M, Perrodou E, Levashina EA et al. Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci USA 2000; 97(21):11427–11432.CrossRefPubMedGoogle Scholar
  75. 75.
    Levashina EA, Moita LF, Blandin S et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 2001; 104(5):709–718.CrossRefPubMedGoogle Scholar
  76. 76.
    Blandin S, Shiao SH, Moita LF et al. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 2004; 116(5):661–670.CrossRefPubMedGoogle Scholar
  77. 77.
    Pearson AM. Scavenger receptors in innate immunity. Curr Opin Immunol 1996; 8(1):20–28.CrossRefPubMedGoogle Scholar
  78. 78.
    Pearson A, Lux A, Krieger M. Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc Natl Acad Sci USA 1995; 92(9):4056–4060.CrossRefPubMedGoogle Scholar
  79. 79.
    Ramet M, Pearson A, Manfruelli P et al. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 2001; 15(6):1027–1038.CrossRefPubMedGoogle Scholar
  80. 80.
    Schlenke TA, Begun DJ. Linkage disequilibrium and recent selection at three immunity receptor loci in Drosophila simulans. Genetics 2005; 169(4):2013–2022.CrossRefPubMedGoogle Scholar
  81. 81.
    Franc NC, Heitzler P, Ezekowitz RA et al. Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 1999; 284(5422):1991–1994.CrossRefPubMedGoogle Scholar
  82. 82.
    Stuart LM, Deng J, Silver JM et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J Cell Biol 2005; 170(3):477–485.CrossRefPubMedGoogle Scholar
  83. 83.
    Philips JA, Rubin EJ, Perrimon N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 2005; 309(5738):1251–1253.CrossRefPubMedGoogle Scholar
  84. 84.
    Hori S, Kobayashi A, Natori S. A novel hemocyte-specific membrane protein of Sarcophaga (flesh fly). Eur J Biochem 2000; 267(17):5397–5403.CrossRefPubMedGoogle Scholar
  85. 85.
    Kocks C, Cho JH, Nehme N et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 2005; 123(2):335–346.CrossRefPubMedGoogle Scholar
  86. 86.
    Watson FL, Puttmann-Holgado R, Thomas F et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 2005; 309(5742):1874–1878.CrossRefPubMedGoogle Scholar
  87. 87.
    Schmucker D, Clemens JC, Shu H et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 2000; 101(6):671–684.CrossRefPubMedGoogle Scholar
  88. 88.
    Ang LH, Kim J, Stepensky V et al. Dock and Pak regulate olfactory axon pathfinding in Drosophila. Development 2003; 130(7):1307–1316.CrossRefPubMedGoogle Scholar
  89. 89.
    Theopold U, Samakovlis C, Erdjument-Bromage H et al. Helix pomatia lectin, an inducer of Drosophila immune response, binds to hemomucin, a novel surface mucin. J Biol Chem 1996; 271(22):12708–12715.CrossRefPubMedGoogle Scholar
  90. 90.
    Haq S, Kubo T, Kurata S et al. Purification, characterization, and cDNA cloning of a galactose-specific C-type lectin from Drosophila melanogaster. J Biol Chem 1996; 271(33):20213–20218.CrossRefPubMedGoogle Scholar
  91. 91.
    Vasta GR, Quesenberry M, Ahmed H et al. C-type lectins and galectins mediate innate and adaptive immune functions: Their roles in the complement activation pathway. Dev Comp Immunol 1999; 23(4–5):401–420.CrossRefPubMedGoogle Scholar
  92. 92.
    Fujita Y, Kurata S, Homma K et al. A novel lectin from Sarcophaga. Its purification, characterization, and cDNA cloning. J Biol Chem 1998; 273(16):9667–9672.CrossRefPubMedGoogle Scholar
  93. 93.
    Pace KE, Baum LG. Insect galectins: Roles in immunity and development. Glycoconj J 2004; 19(7–9):607–614.PubMedGoogle Scholar
  94. 94.
    Pace KE, Lebestky T, Hummel T et al. Characterization of a novel Drosophila melanogaster galectin. Expression in developing immune, neural, and muscle tissues. J Biol Chem 2002; 277(15):13091–13098.CrossRefPubMedGoogle Scholar
  95. 95.
    Swaminathan CP, Brown P, Roychowdhury A et al. Dual strategies for peptidoglycan recognition by peptidoglycan recognition proteins (PGRPs). Proc Natl Acad Sci 2006; 103(3):684–689.CrossRefPubMedGoogle Scholar
  96. 96.
    Reiser JB, Teyton L, Wilson IA. Crystal structure of the Drosophila peptidoglycan recognition protein (PGRP)-SA at 1.56 A resolution. J Mol Biol 2004; 340(4):909–917.CrossRefPubMedGoogle Scholar
  97. 97.
    Kim MS, Byun M, Oh BH. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat Immunol 2003; 4(8):787–793.CrossRefPubMedGoogle Scholar
  98. 98.
    Foley E, O’Farrell PH. Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol 2004; 2(8):E203.CrossRefPubMedGoogle Scholar
  99. 99.
    Stroschein-Stevenson SL, Foley E, O’Farrell PH et al. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol 2006; 4(1):84–99.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Subhamoy Pal
    • 1
  • Louisa P. Wu
    • 1
  1. 1.Center for Biosystems ResearchUniversity of Maryland Biotechnology InstituteCollege ParkUSA

Personalised recommendations