Skip to main content

Biology of Aging

  • Chapter
  • First Online:
Book cover Cardiothoracic Surgery in the Elderly
  • 1168 Accesses

Abstract

This chapter briefly summarizes what we currently know about some of the biological changes that accompany aging, and then tries to predict which of these may be the most relevant to the onset of age-related cardiac pathology, and the ultimate need for cardiothoracic surgery in older persons. Although cardiovascular diseases are now the major cause of mortality in developed countries, and age is a major risk factor for many of these diseases, it is still not clear just which age-related changes are the most critical in affecting longevity or the risk of dying as a result of cardiovascular pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCay CM, Crowell MF, Maynard LA. The effect of growth upon the length of life span and upon ultimate body size. J Nutr. 1935;10:63–75.

    Google Scholar 

  2. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;2:298–300.

    PubMed  CAS  Google Scholar 

  3. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–35.

    Article  PubMed  CAS  Google Scholar 

  4. Weindruch R, Walford RL. The retardation of aging and disease by dietary restriction. Springfield, IL: Charles C. Thomas; 1988.

    CAS  Google Scholar 

  5. Lane MR, Ingram DK, Roth GS. Nutritional modulation of aging in nonhuman primates. J Nutr Health Aging. 1999;3:69–76.

    Article  Google Scholar 

  6. Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325:201–4.

    Article  PubMed  CAS  Google Scholar 

  7. Heilbronn LK, de Jonge L, Frisard MI, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals. JAMA. 2006;295:1539–48.

    Article  PubMed  CAS  Google Scholar 

  8. Sinclair DA, Howitz KT. Dietary restriction, hormesis, and small molecule mimetics. In: Masoro EJ, Austad SN, editors. Handbook of the biology of aging. 6th ed. New York, NY: Academic Press; 2006. p. 63–104.

    Google Scholar 

  9. Masoro EJ. Caloric restriction and aging: an update. Exp Gerontol. 2000;35:299–305.

    Article  PubMed  CAS  Google Scholar 

  10. Murakami S, Salmon A, Miller RA. Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J. 2003;17:1565–6.

    PubMed  CAS  Google Scholar 

  11. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–2.

    Article  PubMed  CAS  Google Scholar 

  12. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410:227–30.

    Article  PubMed  CAS  Google Scholar 

  13. Campisi J, Vijg J. Does damage to DNA and other macromolecules play a role in aging? If so, how? J Gerontol. 2009;64A:175–8.

    Article  CAS  Google Scholar 

  14. Stadtman ER. Protein oxidation and aging. Science. 1992;257:1220–4.

    Article  PubMed  CAS  Google Scholar 

  15. Hamilton ML, Van Remmen H, Drake JA, et al. Does oxidative damage increase with age? Proc Natl Acad Sci USA. 2001;98:10469–74.

    Article  PubMed  CAS  Google Scholar 

  16. Ciechanover A. Proteolysis: from the lysosome to ubiquitin to the proteosome. Nat Rev Mol Cell Biol. 2005;6:79–86.

    Article  PubMed  CAS  Google Scholar 

  17. Cuervo AM. Calorie restriction and aging: the ultimate cleansing diet. J Gerontol. 2008;63A:547–9.

    Google Scholar 

  18. Pamplona R, Portero-Otin M, Sanz A, et al. Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Exp Gerontol. 2004;39:725–33.

    Article  PubMed  CAS  Google Scholar 

  19. Pamplona R. Membrane phospholipids, lipoxidative damage, and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta. 2008;1777:1249–62.

    Article  PubMed  CAS  Google Scholar 

  20. Friguet B, Szweda L. Inhibition of the multicatalytic proteinase (proteosome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett. 1997;405:21–5.

    Article  PubMed  CAS  Google Scholar 

  21. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    Article  PubMed  CAS  Google Scholar 

  22. Blackburn EH, Greider CW, Henderson E, et al. Recognition and elongation of telomeres by telomerase. Genome. 1989;31:553–60.

    Article  PubMed  CAS  Google Scholar 

  23. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal cells. Science. 1998;279:349–52.

    Article  PubMed  CAS  Google Scholar 

  24. Blasco MA. Telomere length, stem cells and ageing. Nat Chem Biol. 2007;3:640–7.

    Article  PubMed  CAS  Google Scholar 

  25. Krtolica A, Parrinello S, Lockett S, et al. Senescent fibroblasts promote epithelial growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA. 2001;98:12072–7.

    Article  PubMed  CAS  Google Scholar 

  26. Sedivy J. Telomeres limit cancer growth by inducing senescence: long sought in vivo evidence obtained. Cancer Cell. 2007;11:389–91.

    Article  PubMed  CAS  Google Scholar 

  27. Wright WE, Piatyszek MA, Rainey WE, et al. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18:173–9.

    Article  PubMed  CAS  Google Scholar 

  28. Liu K, Schoonmaker MM, Levine BL, et al. Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes. Proc Natl Acad Sci USA. 1999;96:5147–52.

    Article  PubMed  CAS  Google Scholar 

  29. Holt SE, Wright WE, Shay JW. Regulation of telomerase activity in immortal cell lines. Mol Cell Biol. 1996;16:2932–9.

    PubMed  CAS  Google Scholar 

  30. Sharpless NE, DePinho RA. How stem cells age and why this makes us old. Nat Rev Mol Cell Biol. 2007;8:703–12.

    Article  PubMed  CAS  Google Scholar 

  31. Tomas-Loba A, Flores I, Fernandez-Marcos J, et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell. 2008;135:609–22.

    Article  PubMed  CAS  Google Scholar 

  32. Ogami M, Ikura Y, Ohsawa M, et al. Telomere shortening in human coronary heart disease. Arterioscler Thromb Vasc Biol. 2004;24:546–50.

    Article  PubMed  CAS  Google Scholar 

  33. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988;118:75–86.

    PubMed  CAS  Google Scholar 

  34. Morris J, Tissenbaum H, Ruvkun G. A phosphatidylinositol-3 OH kinase family member regulates longevity and diapause in Caenorhabditis elegans. Nature. 1996;382:536–9.

    Article  PubMed  CAS  Google Scholar 

  35. Kenyon C, Chang C, Genesch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–4.

    Article  PubMed  CAS  Google Scholar 

  36. Kimura D, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, An insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277:942–6.

    Article  PubMed  CAS  Google Scholar 

  37. Warner HR. Longevity genes: from primitive organisms to humans. Mech Ageing Dev. 2005;126:235–42.

    Article  PubMed  CAS  Google Scholar 

  38. Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424:277–84.

    Article  PubMed  CAS  Google Scholar 

  39. Wolff S, Dillin A. The trifecta of aging in Caenorhabditis elegans. Exp Gerontol. 2006;41:894–903.

    Article  PubMed  Google Scholar 

  40. Sarbassov DD, Ali SM, Sabatini DA. Growing roles of the mTOR pathway. Curr Opin Cell Biol. 2005;17:596–603.

    Article  PubMed  CAS  Google Scholar 

  41. Vellai T, Takacs-Vellai K, Zhang Y, et al. Influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426:620.

    Article  PubMed  CAS  Google Scholar 

  42. Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5.

    PubMed  CAS  Google Scholar 

  43. Kaeberlein M, Powers R, Steffen K, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005;310:1193–6.

    Article  PubMed  CAS  Google Scholar 

  44. Stanfel MN, Shamich LS, Kaeberlein M, Kennedy BK. The TOR pathway comes of age. Biochim Biophys Acta. 2009;1790:1067–74.

    Article  PubMed  CAS  Google Scholar 

  45. Haigis MC, Guarente LP. Mammalian sirtuins – emerging roles in physiology, aging and calorie restriction. Genes Dev. 2006;20:2913–21.

    Article  PubMed  CAS  Google Scholar 

  46. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article  PubMed  CAS  Google Scholar 

  47. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996;384:33.

    Article  PubMed  CAS  Google Scholar 

  48. Bartke A, Wright JC, Mattison JA, et al. Extending the life span of long-lived mice. Nature. 2001;414:412.

    Article  PubMed  CAS  Google Scholar 

  49. Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science. 2002;295:2450–2.

    Article  PubMed  CAS  Google Scholar 

  50. Migliaccio E, Giorgio M, Mele S, et al. The p66shc adapter protein controls oxidative stress response and life span in mammals. Nature. 1999;402:309–13.

    Article  PubMed  CAS  Google Scholar 

  51. Conover CA, Bale LK. Loss of pregnancy-associated plasma protein A extends life span in mice. Aging Cell. 2007;6:727–9.

    Article  PubMed  CAS  Google Scholar 

  52. Walker GA, Lithgow GJ. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell. 2003;2:131–9.

    Article  PubMed  CAS  Google Scholar 

  53. Mishkin R, Masos T. Transgenic mice over-expressing urokinase-type plasminogen activator in brain exhibit reduced food consumption, body weight and size, and increased longevity. J Gerontol. 1997;52:B118–24.

    Google Scholar 

  54. Conboy IM, Rando TA. Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle. 2005;4:407–10.

    Article  PubMed  CAS  Google Scholar 

  55. Sharpless NE, Schatten G. Stem cell aging. J Gerontol. 2009;64A:202–4.

    Article  Google Scholar 

  56. Warner HR. Is cell death and replacement a factor in aging. Mech Ageing Dev. 2007;128:13–6.

    Article  PubMed  CAS  Google Scholar 

  57. Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC. Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J Bone Miner Res. 2007;22:1492–501.

    Article  PubMed  Google Scholar 

  58. Dimri GP, Lee X, Basile G, et al. A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7.

    Article  PubMed  CAS  Google Scholar 

  59. Vaupel JW, Kistowski KG. The remarkable rise in life expectancy and how it will affect medicine. Bundesgesundheitsblatt Gesundheitforschung Gesundheitsschutz. 2005;48:586–92.

    Article  CAS  Google Scholar 

  60. Perez VI, Bokov A, Van Remmen H, et al. Is the oxidative stress theory of aging dead? Biochim Biophys Acta. 2009;1790:1005–14.

    Article  PubMed  CAS  Google Scholar 

  61. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium. Pediatr Transplant. 2003;7 Suppl 3:86–8.

    Article  PubMed  Google Scholar 

  62. Katsjura J, Rota M, Urbanek K, et al. The telomere-telomerase axis and the heart. Antioxid Redox Signal. 2006;8:2125–41.

    Article  Google Scholar 

  63. Kajstura J, Urbanek K, Rota M, et al. Cardiac stem cells and myocardial disease. J Mol Cell Cardiol. 2008;45:505–13.

    Article  PubMed  CAS  Google Scholar 

  64. Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res. 2004;94:514–24.

    Article  PubMed  CAS  Google Scholar 

  65. Mitchell JR, Wood E, Collins KA. A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999;402:551–5.

    Article  PubMed  CAS  Google Scholar 

  66. Vulliamy T, Marrone A, Szydlo R, et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet. 2004;36:447–9.

    Article  PubMed  CAS  Google Scholar 

  67. Espejel S, Klatt P, Menissier-de Murcia J, et al. Impact of telomerase ablation on organismal viability, aging and tumorigenesis in mice lacking the DNA repair proteins PARP-1, Ku86, or DNA-PKcs. J Cell Biol. 2004;167:627–38.

    Article  PubMed  CAS  Google Scholar 

  68. Oh H, Wang SC, Prahash A, et al. Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA. 2003;100:5378–83.

    Article  PubMed  CAS  Google Scholar 

  69. Leri A, Franco S, Zacheo A, et al. Ablation of telomerase and telomere loss leads to cardiac dilation and heart failure associated with p53 upregulation. EMBO J. 2003;22:131–9.

    Article  PubMed  CAS  Google Scholar 

  70. Chang S, Multani AS, Cabrera NG, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet. 2004;36:877–82.

    Article  PubMed  CAS  Google Scholar 

  71. Miller RA. Kleemeier award lecture: are there genes for aging? J Gerontol. 1999;54A:B297–307.

    Google Scholar 

  72. Coschigano KT, Holland AN, Riders ME, et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin growth factor I levels and increased life span. Endocrinology. 2003;144:3799–810.

    Article  PubMed  CAS  Google Scholar 

  73. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308:1909–11.

    Article  PubMed  CAS  Google Scholar 

  74. Kuro-o M. Klotho and aging. Biochim Biophys Acta. 2009;1790:1049–58.

    Article  PubMed  CAS  Google Scholar 

  75. Seo AY, Xu J, Servais S, et al. Mitochondrial iron accumulation with age and functional consequences. Aging Cell. 2008;7:706–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huber R. Warner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Warner, H.R. (2011). Biology of Aging. In: Katlic, M. (eds) Cardiothoracic Surgery in the Elderly. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0892-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0892-6_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0891-9

  • Online ISBN: 978-1-4419-0892-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics