Cardiac Imaging in the Elderly

  • Faisal Nabi
  • Dipan J. Shah
  • Stephen H. Little
  • Su Min Chang


With noninvasive multi-modality cardiovascular imaging, today’s cardiovascular surgeons have unprecedented insight into cardiac pathophysiology. Rapid and accurate answers are available for common clinical questions involving ischemic heart disease, congestive heart failure, valvular heart disease and pericardial processes. An understanding of the imaging tools available and their appropriate application will result in superior care and better clinical outcomes in our elderly surgical patient population.


Cardiac imaging Echocardiography Nuclear cardiology Cardiac computed tomography Cardiac magnetic resonance imaging Ischemic heart disease Congestive heart failure Valvular heart disease Postoperative cardiac imaging Viability 


  1. 1.
    Heller G, Hendel R. Nuclear cardiology: practical applications. New York: McGraw-Hill; 2010.Google Scholar
  2. 2.
    Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290–305.PubMedCrossRefGoogle Scholar
  3. 3.
    Hendel RC, Berman DS, Di Carli MF, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Endorsed by the American College of Emergency Physicians. J Am Coll Cardiol. 2009;53(23):2201–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42(6):831–7.PubMedGoogle Scholar
  5. 5.
    Min JK, Shaw LJ, Berman DS. The present state of coronary computed tomography angiography a process in evolution. J Am Coll Cardiol. 2010;55(10):957–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Bettencourt N, Rocha J, Carvalho M, et al. Multislice computed tomography in the exclusion of coronary artery disease in patients with presurgical valve disease. Circ Cardiovasc Imaging. 2009;2(4):306–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.PubMedGoogle Scholar
  9. 9.
    Pennell DJ, Sechtem UP, Higgins CB, et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J. 2004;25(21):1940–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Semelka RC, Tomei E, Wagner S, et al. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J. 1990;119(6):1367–73.PubMedCrossRefGoogle Scholar
  11. 11.
    Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Grebenc ML, Rosado de Christenson ML, Burke AP, Green CE, Galvin JR. Primary cardiac and pericardial neoplasms: radiologic-pathologic correlation. Radiographics. 2000;20(4):1073–103.PubMedGoogle Scholar
  13. 13.
    Grebenc ML, Rosado-de-Christenson ML, Green CE, Burke AP, Galvin JR. Cardiac myxoma: imaging features in 83 patients. Radiographics. 2002;22(3):673–89.PubMedGoogle Scholar
  14. 14.
    Fuster V, Kim RJ. Frontiers in cardiovascular magnetic resonance. Circulation. 2005;112(1):135–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Comeau CR, Berke AD, Wolff SD. Ventricular lipoma detection by magnetic resonance imaging. Circulation. 2001;103(10):1485–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Araoz PA, Mulvagh SL, Tazelaar HD, Julsrud PR, Breen JF. CT and MR imaging of benign primary cardiac neoplasms with echocardiographic correlation. Radiographics. 2000;20(5):1303–19.PubMedGoogle Scholar
  17. 17.
    Otterstad JE, Froeland G, St John SM, Holme I. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J. 1997;18(3):507–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Helbing WA, Bosch HG, Maliepaard C, et al. Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am J Cardiol. 1995;76(8):589–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J. 2004;147(2):218–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Bellenger NG, Grothues F, Smith GC, Pennell DJ. Quantification of right and left ventricular function by cardiovascular magnetic resonance. Herz. 2000;25(4):392–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology. 2001;219(1):264–9.PubMedGoogle Scholar
  22. 22.
    Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.PubMedCrossRefGoogle Scholar
  23. 23.
    Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation. 2002;105(2):224–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol. 2000;36(6):1985–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet. 2001;357(9249):21–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218(1):215–23.PubMedGoogle Scholar
  27. 27.
    Moller JE, Hillis GS, Oh JK, Reeder GS, Gersh BJ, Pellikka PA. Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am Heart J. 2006;151(2):419–25.PubMedCrossRefGoogle Scholar
  28. 28.
    White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76(1):44–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Carluccio E, Tommasi S, Bentivoglio M, Buccolieri M, Prosciutti L, Corea L. Usefulness of the severity and extent of wall motion abnormalities as prognostic markers of an adverse outcome after a first myocardial infarction treated with thrombolytic therapy. Am J Cardiol. 2000;85(4):411–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Bursi F, Enriquez-Sarano M, Jacobsen SJ, Roger VL. Mitral regurgitation after myocardial infarction: a review. Am J Med. 2006;119(2):103–12.PubMedCrossRefGoogle Scholar
  31. 31.
    Moller JE, Pellikka PA, Hillis GS, Oh JK. Prognostic importance of diastolic function and filling pressure in patients with acute myocardial infarction. Circulation. 2006;114(5):438–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Li F, Chen YG, Yao GH, et al. Usefulness of left ventricular conic index measured by real-time three-dimensional echocardiography to predict left ventricular remodeling after acute myocardial infarction. Am J Cardiol. 2008;102(11):1433–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Quinones MA, Verani MS, Haichin RM, Mahmarian JJ, Suarez J, Zoghbi WA. Exercise echocardiography versus 201Tl single-photon emission computed tomography in evaluation of coronary artery disease. Analysis of 292 patients. Circulation. 1992;85(3):1026–31.PubMedCrossRefGoogle Scholar
  34. 34.
    Elhendy A, Schinkel AF, Bax JJ, van Domburg RT, Poldermans D. Prognostic value of dobutamine stress echocardiography in patients with normal left ventricular systolic function. J Am Soc Echocardiogr. 2004;17(7):739–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Sicari R, Pasanisi E, Venneri L, Landi P, Cortigiani L, Picano E. Stress echo results predict mortality: a large-scale multicenter prospective international study. J Am Coll Cardiol. 2003;41(4):589–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Rizzello V, Poldermans D, Boersma E, et al. Opposite patterns of left ventricular remodeling after coronary revascularization in patients with ischemic cardiomyopathy: role of myocardial viability. Circulation. 2004;110(16):2383–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Dijkmans PA, Senior R, Becher H, et al. Myocardial contrast echocardiography evolving as a clinically feasible technique for accurate, rapid, and safe assessment of myocardial perfusion: the evidence so far. J Am Coll Cardiol. 2006;48(11):2168–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Galiuto L, Garramone B, Scara A, et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J Am Coll Cardiol. 2008;51(5):552–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Khumri TM, Nayyar S, Idupulapati M, et al. Usefulness of myocardial contrast echocardiography in predicting late mortality in patients with anterior wall acute myocardial infarction. Am J Cardiol. 2006;98(9):1150–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Underwood SR, Anagnostopoulos C, Cerqueira M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31(2):261–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol. 1993;22(3):665–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):171–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Valeti US, Miller TD, Hodge DO, Gibbons RJ. Exercise single-photon emission computed tomography provides effective risk stratification of elderly men and elderly women. Circulation. 2005;111(14):1771–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Hachamovitch R, Hayes S, Friedman JD, et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol. 2003;41(8):1329–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Ladenheim ML, Pollock BH, Rozanski A, et al. Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol. 1986;7(3):464–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Iskander S, Iskandrian AE. Risk assessment using single-photon emission computed tomographic technetium-99m sestamibi ­imaging. J Am Coll Cardiol. 1998;32(1):57–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Sharir T, Germano G, Kavanagh PB, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation. 1999;100(10):1035–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Mahmarian JJ, Shaw LJ, Filipchuk NG, et al. A multinational study to establish the value of early adenosine technetium-99m sestamibi myocardial perfusion imaging in identifying a low-risk group for early hospital discharge after acute myocardial infarction. J Am Coll Cardiol. 2006;48(12):2448–57.PubMedCrossRefGoogle Scholar
  49. 49.
    Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107(23):2900–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Shaw LJ, Berman DS, Maron DJ, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32(7):375–410.PubMedCrossRefGoogle Scholar
  52. 52.
    Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Siebelink HM, Blanksma PK, Crijns HJ, et al. No difference in cardiac event-free survival between positron emission tomography-guided and single-photon emission computed tomography-guided patient management: a prospective, randomized comparison of patients with suspicion of jeopardized myocardium. J Am Coll Cardiol. 2001;37(1):81–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of ­multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50(12):1161–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Klem I, Heitner JF, Shah DJ, et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol. 2006;47(8):1630–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Steel K, Broderick R, Gandla V, et al. Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation. 2009;120(14):1390–400.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.PubMedCrossRefGoogle Scholar
  59. 59.
    Wellnhofer E, Olariu A, Klein C, et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation. 2004;109(18):2172–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics – 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115(5):e69–171.PubMedCrossRefGoogle Scholar
  61. 61.
    Alderman EL, Fisher LD, Litwin P, et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation. 1983;68(4):785–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Marwick TH, Schwaiger M. The future of cardiovascular imaging in the diagnosis and management of heart failure, part 1: tasks and tools. Circ Cardiovasc Imaging. 2008;1(1):58–69.PubMedCrossRefGoogle Scholar
  63. 63.
    West AM, Kramer CM. Cardiovascular magnetic resonance imaging of myocardial infarction, viability, and cardiomyopathies. Curr Probl Cardiol. 2010;35(4):176–220.PubMedCrossRefGoogle Scholar
  64. 64.
    Ghostine S, Caussin C, Habis M, et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. Eur Heart J. 2008;29:2133–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Underwood SR, Bax JJ, vom Dahl J, et al. Imaging techniques for the assessment of myocardial hibernation. Report of a Study Group of the European Society of Cardiology. Eur Heart J. 2004;25(10):815–36.PubMedCrossRefGoogle Scholar
  66. 66.
    Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26(2):147–86.PubMedCrossRefGoogle Scholar
  67. 67.
    Baumgartner H, Porenta G, Lau YK, et al. Assessment of myocardial viability by dobutamine echocardiography, positron emission tomography and thallium-201 SPECT: correlation with histopathology in explanted hearts. J Am Coll Cardiol. 1998;32(6):1701–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Schvartzman PR, Srichai MB, Grimm RA, et al. Nonstress delayed-enhancement magnetic resonance imaging of the myocardium predicts improvement of function after revascularization for chronic ischemic heart disease with left ventricular dysfunction. Am Heart J. 2003;146(3):535–41.PubMedCrossRefGoogle Scholar
  69. 69.
    Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function. Circulation. 2002;105(11):1387–93.PubMedCrossRefGoogle Scholar
  70. 70.
    Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10(2):165–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling ­pressures. J Am Coll Cardiol. 1997;30(6):1527–33.PubMedCrossRefGoogle Scholar
  72. 72.
    Nagueh SF. Echocardiographic assessment of left ventricular relaxation and cardiac filling pressures. Curr Heart Fail Rep. 2009;6(3):154–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Rohde LE, Palombini DV, Polanczyk CA, Goldraich LA, Clausell N. A hemodynamically oriented echocardiography-based strategy in the treatment of congestive heart failure. J Card Fail. 2007;13(8):618–25.PubMedCrossRefGoogle Scholar
  74. 74.
    Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.PubMedCrossRefGoogle Scholar
  75. 75.
    Cawley PJ, Maki JH, Otto CM. Cardiovascular magnetic resonance imaging for valvular heart disease: technique and validation. Circulation. 2009;119(3):468–78.PubMedCrossRefGoogle Scholar
  76. 76.
    Shipton B, Wahba H. Valvular heart disease: review and update. Am Fam Physician. 2001;63(11):2201–8.PubMedGoogle Scholar
  77. 77.
    Bonow RO, Carabello BA, Chatterjee K, et al. focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(13):e1–142.PubMedCrossRefGoogle Scholar
  78. 78.
    Mylonakis E, Calderwood SB. Infective endocarditis in adults. N Engl J Med. 2001;345(18):1318–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Li JS, Sexton DJ, Mick N, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30(4):633–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Sverdlov AL, Taylor K, Elkington AG, Zeitz CJ, Beltrame JF. Images in cardiovascular medicine. Cardiac magnetic resonance imaging identifies the elusive perivalvular abscess. Circulation. 2008;118(1):e1–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Zoghbi WA, Farmer KL, Soto JG, Nelson JG, Quinones MA. Accurate noninvasive quantification of stenotic aortic valve area by Doppler echocardiography. Circulation. 1986;73(3):452–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Sondergaard L, Hildebrandt P, Lindvig K, et al. Valve area and cardiac output in aortic stenosis: quantification by magnetic resonance velocity mapping. Am Heart J. 1993;126(5):1156–64.PubMedCrossRefGoogle Scholar
  83. 83.
    Kilner PJ, Manzara CC, Mohiaddin RH, et al. Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation. 1993;87(4):1239–48.PubMedCrossRefGoogle Scholar
  84. 84.
    Eichenberger AC, Jenni R, von Schulthess GK. Aortic valve pressure gradients in patients with aortic valve stenosis: quantification with velocity-encoded cine MR imaging. Am J Roentgenol. 1993;160(5):971–7.Google Scholar
  85. 85.
    Caruthers SD, Lin SJ, Brown P, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation. 2003;108(18):2236–43.PubMedCrossRefGoogle Scholar
  86. 86.
    Sondergaard L, Lindvig K, Hildebrandt P, et al. Quantification of aortic regurgitation by magnetic resonance velocity mapping. Am Heart J. 1993;125(4):1081–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Zoghbi WA, Enriquez-Sarano M, Foster E, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16(7):777–802.PubMedCrossRefGoogle Scholar
  88. 88.
    Ley S, Eichhorn J, Ley-Zaporozhan J, et al. Evaluation of aortic regurgitation in congenital heart disease: value of MR imaging in comparison to echocardiography. Pediatr Radiol. 2007;37(5):426–36.PubMedCrossRefGoogle Scholar
  89. 89.
    Honda N, Machida K, Hashimoto M, et al. Aortic regurgitation: quantitation with MR imaging velocity mapping. Radiology. 1993;186(1):189–94.PubMedGoogle Scholar
  90. 90.
    Dulce MC, Mostbeck GH, O’Sullivan M, Cheitlin M, Caputo GR, Higgins CB. Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology. 1992;185(1):235–40.PubMedGoogle Scholar
  91. 91.
    Chandrashekhar Y, Westaby S, Narula J. Mitral stenosis. Lancet. 2009;374(9697):1271–83.PubMedCrossRefGoogle Scholar
  92. 92.
    Bargiggia GS, Tronconi L, Sahn DJ, et al. A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation. 1991;84(4):1481–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Grayburn PA, Fehske W, Omran H, Brickner ME, Luderitz B. Multiplane transesophageal echocardiographic assessment of mitral regurgitation by Doppler color flow mapping of the vena contracta. Am J Cardiol. 1994;74(9):912–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Lesniak-Sobelga A, Olszowska M, Pienazek P, Podolec P, Tracz W. Vena contracta width as a simple method of assessing mitral valve regurgitation. Comparison with Doppler quantitative methods. J Heart Valve Dis. 2004;13(4):608–14.PubMedGoogle Scholar
  95. 95.
    Little SH, Pirat B, Kumar R, et al. Three-dimensional color Doppler echocardiography for direct measurement of vena contracta area in mitral regurgitation: in vitro validation and clinical experience. JACC Cardiovasc Imaging. 2008;1(6):695–704.PubMedCrossRefGoogle Scholar
  96. 96.
    Ascah KJ, Stewart WJ, Jiang L, et al. A Doppler-two-dimensional echocardiographic method for quantitation of mitral regurgitation. Circulation. 1985;72(2):377–83.PubMedCrossRefGoogle Scholar
  97. 97.
    Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr. 2002;15(2):167–84.PubMedCrossRefGoogle Scholar
  98. 98.
    Masci PG, Dymarkowski S, Bogaert J. Valvular heart disease: what does cardiovascular MRI add? Eur Radiol. 2008;18(2):197–208.PubMedCrossRefGoogle Scholar
  99. 99.
    Fujita N, Chazouilleres AF, Hartiala JJ, et al. Quantification of mitral regurgitation by velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol. 1994;23(4):951–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Hundley WG, Li HF, Willard JE, et al. Magnetic resonance imaging assessment of the severity of mitral regurgitation. Comparison with invasive techniques. Circulation. 1995;92(5):1151–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Kizilbash AM, Hundley WG, Willett DL, Franco F, Peshock RM, Grayburn PA. Comparison of quantitative Doppler with magnetic resonance imaging for assessment of the severity of mitral regurgitation. Am J Cardiol. 1998;81(6):792–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Kon MW, Myerson SG, Moat NE, Pennell DJ. Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. J Heart Valve Dis. 2004;13(4):600–7.PubMedGoogle Scholar
  103. 103.
    Khanna D, Vengala S, Miller AP, et al. Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography. 2004;21(8):737–43.PubMedCrossRefGoogle Scholar
  104. 104.
    Ryan LP, Salgo IS, Gorman RC, Gorman III JH. The emerging role of three-dimensional echocardiography in mitral valve repair. Semin Thorac Cardiovasc Surg. 2006;18(2):126–34.PubMedCrossRefGoogle Scholar
  105. 105.
    Pirat B, Little SH, Igo SR, et al. Direct measurement of proximal isovelocity surface area by real-time three-dimensional color Doppler for quantitation of aortic regurgitant volume: an in vitro validation. J Am Soc Echocardiogr. 2009;22(3):306–13.PubMedCrossRefGoogle Scholar
  106. 106.
    Sugeng L, Shernan SK, Weinert L, et al. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr. 2008;21(12):1347–54.PubMedCrossRefGoogle Scholar
  107. 107.
    Zoghbi WA, Chambers JB, Dumesnil JG, et al. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound: a report From the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2009;22(9):975–1014.PubMedCrossRefGoogle Scholar
  108. 108.
    Tong AT, Roudaut R, Ozkan M, et al. Transesophageal echocardiography improves risk assessment of thrombolysis of prosthetic valve thrombosis: results of the international PRO-TEE registry. J Am Coll Cardiol. 2004;43(1):77–84.PubMedCrossRefGoogle Scholar
  109. 109.
    Chan J, Marwan M, Schepis T, Ropers D, Du L, Achenbach S. Images in cardiovascular medicine. Cardiac CT assessment of prosthetic aortic valve dysfunction secondary to acute thrombosis and response to thrombolysis. Circulation. 2009;120(19):1933–4.PubMedCrossRefGoogle Scholar
  110. 110.
    Appelbaum A, Kouchoukos NT, Blackstone EH, Kirklin JW. Early risks of open heart surgery for mitral valve disease. Am J Cardiol. 1976;37(2):201–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Slama MA, Novara A, Van de PP, et al. Diagnostic and therapeutic implications of transesophageal echocardiography in medical ICU patients with unexplained shock, hypoxemia, or suspected endocarditis. Intensive Care Med. 1996;22(9):916–22.PubMedCrossRefGoogle Scholar
  112. 112.
    Yong Y, Wu D, Fernandes V, et al. Diagnostic accuracy and cost-effectiveness of contrast echocardiography on evaluation of cardiac function in technically very difficult patients in the intensive care unit. Am J Cardiol. 2002;89(6):711–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Kurt M, Shaikh KA, Peterson L, et al. Impact of contrast echocardiography on evaluation of ventricular function and clinical management in a large prospective cohort. J Am Coll Cardiol. 2009;53(9):802–10.PubMedCrossRefGoogle Scholar
  114. 114.
    Pepi M, Muratori M, Barbier P, et al. Pericardial effusion after cardiac surgery: incidence, site, size, and haemodynamic consequences. Br Heart J. 1994;72(4):327–31.PubMedCrossRefGoogle Scholar
  115. 115.
    Price S, Prout J, Jaggar SI, Gibson DG, Pepper JR. “Tamponade” following cardiac surgery: terminology and echocardiography may both mislead. Eur J Cardiothorac Surg. 2004;26(6):1156–60.PubMedCrossRefGoogle Scholar
  116. 116.
    Ling LH, Oh JK, Schaff HV, et al. Constrictive pericarditis in the modern era: evolving clinical spectrum and impact on outcome after pericardiectomy. Circulation. 1999;100(13):1380–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Hoit BD. Imaging the pericardium. Cardiol Clin. 1990;8(4):587–600.PubMedGoogle Scholar
  118. 118.
    Rajagopalan N, Garcia MJ, Rodriguez L, et al. Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy. Am J Cardiol. 2001;87(1):86–94.PubMedCrossRefGoogle Scholar
  119. 119.
    Masui T, Finck S, Higgins CB. Constrictive pericarditis and restrictive cardiomyopathy: evaluation with MR imaging. Radiology. 1992;182(2):369–73.PubMedGoogle Scholar
  120. 120.
    Goldman S, Zadina K, Moritz T, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44(11):2149–56.PubMedCrossRefGoogle Scholar
  121. 121.
    Schlosser T, Konorza T, Hunold P, Kuhl H, Schmermund A, Barkhausen J. Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol. 2004;44(6):1224–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Kamdar AR, Meadows TA, Roselli EE, et al. Multidetector ­computed tomographic angiography in planning of reoperative cardiothoracic surgery. Ann Thorac Surg. 2008;85(4):1239–45.PubMedCrossRefGoogle Scholar
  123. 123.
    Shah DJ, Dela Cruz JD. Functional valve assessment: the emerging role of cardiovascular magnetic resonance. Methodist DeBakey Cardiovasc J. 2010;6(1):15–19.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Faisal Nabi
    • 1
  • Dipan J. Shah
  • Stephen H. Little
  • Su Min Chang
  1. 1.Department of CardiologyWeill Medical College of Cornell University, Methodist DeBakey Heart and Vascular CenterHoustonUSA

Personalised recommendations