Adrenocortical Carcinoma

Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 153)

Abstract

Adrenal tumors are common, with an estimated incidence of 7.3% from autopsy series [1]. A recent study found an overall 4.4% prevalence of incidental adrenal lesions by computed tomography (CT) [2]. The majority are benign adrenocortical adenomas. Adrenocortical carcinoma (ACC), however, is rare with an estimated prevalence of only 4–12/million population [3]. Histopathology does not always accurately predict malignancy in adrenal tumors. The prognosis for ACCs is poor with an overall 5-year survival of <40% [4,5]. Complete en-bloc, margin-negative (R0) resection is the best treatment. Adjuvant treatment options for ACCs are fairly limited. The dismal survival rates for ACC have remained unchanged over the last 20 years. Advancement in the understanding of the pathophysiology of ACC is therefore essential for the development of more sensitive means of diagnosis and more effective treatment, resulting in better clinical outcome.

Keywords

Adenoma Cortisol Dexamethasone Doxorubicin Histidine 

References

  1. 1.
    Abecassis M, McLoughlin MJ, Langer B, Kudlow JE (1985) Serendipitous adrenal masses: prevalence, significance, and management. Am J Surg 149:783–788PubMedCrossRefGoogle Scholar
  2. 2.
    Bovio S, Cataldi A, Reimondo G et al (2006) Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J Endocrinol Invest 29:298–302PubMedGoogle Scholar
  3. 3.
    NIH (2002) NIH state-of-the-science statement on management of the clinically inapparent adrenal mass (“incidentaloma”). NIH Consens State Sci Statements 19:1–25Google Scholar
  4. 4.
    Allolio B, Fassnacht M (2006) Adrenocortical Carcinoma: Clinical Update. J Clin Endocrinol Metab 91:2027–2037PubMedCrossRefGoogle Scholar
  5. 5.
    Bilimoria KY, Shen WT, Elaraj D et al (2008) Adrenocortical carcinoma in the United States: treatment utilization and prognostic factors. Cancer 113:3130–3136PubMedCrossRefGoogle Scholar
  6. 6.
    Icard P, Goudet P, Charpenay C et al (2001) Adrenocortical carcinomas: surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons study group. World J Surg 25:891–897PubMedCrossRefGoogle Scholar
  7. 7.
    Crucitti F, Bellantone R, Ferrante A, Boscherini M, Crucitti P (1996) The Italian Registry for Adrenal Cortical Carcinoma: analysis of a multiinstitutional series of 129 patients. The ACC Italian Registry Study Group. Surgery 119:161–170PubMedCrossRefGoogle Scholar
  8. 8.
    Kasperlik-Zaluska AA, Migdalska BM, Zgliczynski S, Makowska AM (1995) Adrenocortical carcinoma. A clinical study and treatment results of 52 patients. Cancer 75:2587–2591PubMedCrossRefGoogle Scholar
  9. 9.
    Tauchmanova L, Colao A, Marzano LA et al (2004) Andrenocortical carcinomas: twelve-year prospective experience. World J Surg 28:896–903PubMedCrossRefGoogle Scholar
  10. 10.
    Wooten MD, King DK (1993) Adrenal cortical carcinoma Epidemiology and treatment with mitotane and a review of the literature. Cancer 72:3145–3155PubMedCrossRefGoogle Scholar
  11. 11.
    Sidhu S, Sywak M, Robinson B, Delbridge L (2004) Adrenocortical cancer: recent clinical and molecular advances. Curr Opin Oncol 16:13–18PubMedCrossRefGoogle Scholar
  12. 12.
    Didolkar MS, Bescher RA, Elias EG, Moore RH (1981) Natural history of adrenal cortical carcinoma: a clinicopathologic study of 42 patients. Cancer 47:2153–2161PubMedCrossRefGoogle Scholar
  13. 13.
    Kasperlik-Zeluska AA, Roslonowska E, Slowinska-Srzednicka J et al (1997) Incidentally discovered adrenal mass (incidentaloma): investigation and management of 208 patients. Clin Endocrinol (Oxf) 46:29–37CrossRefGoogle Scholar
  14. 14.
    Luton JP, Cerdas S, Billaud L et al (1990) Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy. N Engl J Med 322:1195–1201PubMedCrossRefGoogle Scholar
  15. 15.
    Henley DJ, van Heerden JA, Grant CS, Carney JA, Carpenter PC (1983) Adrenal cortical carcinoma – a continuing challenge. Surgery 94:926–931PubMedGoogle Scholar
  16. 16.
    Allolio B, Hahner S, Weismann D, Fassnacht M (2004) Management of adrenocortical carcinoma. Clin Endocrinol (Oxf) 60:273–287CrossRefGoogle Scholar
  17. 17.
    Caoili EM, Korobkin M, Francis IR, Cohan RH, Dunnick NR (2000) Delayed enhanced CT of lipid-poor adrenal adenomas. AJR Am J Roentgenol 175:1411–1415PubMedGoogle Scholar
  18. 18.
    Pena CS, Boland GW, Hahn PF, Lee MJ, Mueller PR (2000) Characterization of indeterminate (lipid-poor) adrenal masses: use of washout characteristics at contrast-enhanced CT. Radiology 217:798–802PubMedGoogle Scholar
  19. 19.
    Copeland PM (1999) The incidentally discovered adrenal mass: an update. Endocrinologist 9:415–423CrossRefGoogle Scholar
  20. 20.
    Gomez-Rivera F, Medina-Franco H, Arch-Ferrer JE, Heslin MJ (2005) Adrenocortical carcinoma: a single institution experience. Am Surg 71:90–94PubMedGoogle Scholar
  21. 21.
    Kebebew E, Reiff E, Duh QY, Clark OH, McMillan A (2006) Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress? World J Surg 30:872–878PubMedCrossRefGoogle Scholar
  22. 22.
    Macfarlane DA (1958) Cancer of the adrenal cortex; the natural history, prognosis and treatment in a study of fifty-five cases. Ann R Coll Surg Engl 23:155–186PubMedGoogle Scholar
  23. 23.
    Sullivan M, Boileau M, Hodges CV (1978) Adrenal cortical carcinoma. J Urol 120:660–665PubMedGoogle Scholar
  24. 24.
    Cohn K, Gottesman L, Brennan M (1986) Adrenocortical carcinoma. Surgery 100:1170–1177PubMedGoogle Scholar
  25. 25.
    Kendrick ML, Lloyd R, Erickson L et al (2001) Adrenocortical carcinoma: surgical progress or status quo? Arch Surg 136:543–549PubMedCrossRefGoogle Scholar
  26. 26.
    Shen WT, Sturgeon C, Duh QY (2005) From incidentaloma to adrenocortical carcinoma: the surgical management of adrenal tumors. J Surg Oncol 89:186–192PubMedCrossRefGoogle Scholar
  27. 27.
    Kopf D, Goretzki PE, Lehnert H (2001) Clinical management of malignant adrenal tumors. J Cancer Res Clin Oncol 127:143–155PubMedCrossRefGoogle Scholar
  28. 28.
    Iino K, Oki Y, Sasano H (2000) A case of adrenocortical carcinoma associated with recurrence after laparoscopic surgery. Clin Endocrinol (Oxf) 53:243–248CrossRefGoogle Scholar
  29. 29.
    Ushiyama T, Suzuki K, Kageyama S, Fujita K, Oki Y, Yoshimi T (1997) A case of Cushing’s syndrome due to adrenocortical carcinoma with recurrence 19 months after laparoscopic adrenalectomy. J Urol 157:2239PubMedCrossRefGoogle Scholar
  30. 30.
    Schlamp A, Hallfeldt K, Mueller-Lisse U, Pfluger T, Reincke M (2007) Recurrent adrenocortical carcinoma after laparoscopic resection. Nat Clin Pract Endocrinol Metab 3:191–195 quiz 1 p following 5PubMedCrossRefGoogle Scholar
  31. 31.
    Terzolo M, Berruti A (2008) Adjunctive treatment of adrenocortical carcinoma. Curr Opin Endocrinol Diabetes Obes 15:221–226PubMedCrossRefGoogle Scholar
  32. 32.
    Dackiw AP, Lee JE, Gagel RF, Evans DB (2001) Adrenal cortical carcinoma. World J Surg 25:914–926PubMedCrossRefGoogle Scholar
  33. 33.
    Chiche L, Dousset B, Kieffer E, Chapuis Y (2006) Adrenocortical carcinoma extending into the inferior vena cava: presentation of a 15-patient series and review of the literature. Surgery 139:15–27PubMedCrossRefGoogle Scholar
  34. 34.
    Terzolo M, Angeli A, Fassnacht M et al (2007) Adjuvant mitotane treatment for adrenocortical carcinoma. N Engl J Med 356:2372–2380PubMedCrossRefGoogle Scholar
  35. 35.
    van Ditzhuijsen CI, van de Weijer R, Haak HR (2007) Adrenocortical carcinoma. Neth J Med 65:55–60PubMedGoogle Scholar
  36. 36.
    Baudin E, Pellegriti G, Bonnay M et al (2001) Impact of monitoring plasma 1, 1-dichlorodiphenildichloroethane (o, p’DDD) levels on the treatment of patients with adrenocortical carcinoma. Cancer 92:1385–1392PubMedCrossRefGoogle Scholar
  37. 37.
    Ahlman H, Khorram-Manesh A, Jansson S et al (2001) Cytotoxic treatment of adrenocortical carcinoma. World J Surg 25:927–933PubMedCrossRefGoogle Scholar
  38. 38.
    Berruti A, Terzolo M, Sperone P et al (2005) Etoposide, doxorubicin and cisplatin plus mitotane in the treatment of advanced adrenocortical carcinoma: a large prospective phase II trial. Endocr Relat Cancer 12:657–666PubMedCrossRefGoogle Scholar
  39. 39.
    Khan TS, Imam H, Juhlin C et al (2000) Streptozocin and o, p’DDD in the treatment of adrenocortical cancer patients: long-term survival in its adjuvant use. Ann Oncol 11:1281–1287PubMedCrossRefGoogle Scholar
  40. 40.
    Schteingart DE, Doherty GM, Gauger PG et al (2005) Management of patients with adrenal cancer: recommendations of an international consensus conference. Endocr Relat Cancer 12:667–680PubMedCrossRefGoogle Scholar
  41. 41.
    Quinkler M, Hahner S, Wortmann S et al (2008) Treatment of advanced adrenocortical carcinoma with erlotinib plus gemcitabine. J Clin Endocrinol Metab 93:2057–2062PubMedCrossRefGoogle Scholar
  42. 42.
    Fassnacht M, Hahner S, Polat B et al (2006) Efficacy of adjuvant radiotherapy of the tumor bed on local recurrence of adrenocortical carcinoma. J Clin Endocrinol Metab 91:4501–4504PubMedCrossRefGoogle Scholar
  43. 43.
    Stojadinovic A, Ghossein RA, Hoos A et al (2002) Adrenocortical carcinoma: clinical, morphologic, and molecular characterization. J Clin Oncol 20:941–950PubMedCrossRefGoogle Scholar
  44. 44.
    Harrison LE, Gaudin PB, Brennan MF (1999) Pathologic features of prognostic significance for adrenocortical carcinoma after curative resection. Arch Surg 134:181–185PubMedCrossRefGoogle Scholar
  45. 45.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53PubMedCrossRefGoogle Scholar
  46. 46.
    Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351:453–456PubMedCrossRefGoogle Scholar
  47. 47.
    Ohgaki H, Kleihues P, Heitz PU (1993) p53 mutations in sporadic adrenocortical tumors. Int J Cancer 54:408–410PubMedCrossRefGoogle Scholar
  48. 48.
    Reincke M, Karl M, Travis WH et al (1994) p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab 78:790–794PubMedCrossRefGoogle Scholar
  49. 49.
    Sidhu S, Martin E, Gicquel C et al (2005) Mutation and methylation analysis of TP53 in adrenal carcinogenesis. Eur J Surg Oncol 31:549–554PubMedCrossRefGoogle Scholar
  50. 50.
    Sandrini R, Ribeiro RC, DeLacerda L (1997) Childhood adrenocortical tumors. J Clin Endocrinol Metab 82:2027–2031PubMedCrossRefGoogle Scholar
  51. 51.
    Ribeiro RC, Sandrini F, Figueiredo B et al (2001) An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98:9330–9335PubMedCrossRefGoogle Scholar
  52. 52.
    Latronico AC, Pinto EM, Domenice S et al (2001) An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab 86:4970–4973PubMedCrossRefGoogle Scholar
  53. 53.
    Chang H, Yeung J, Qi C, Xu W (2007) Aberrant nuclear p53 protein expression detected by immunohistochemistry is associated with hemizygous P53 deletion and poor survival for multiple myeloma. Br J Haematol 138:324–329PubMedCrossRefGoogle Scholar
  54. 54.
    Sanchez-Carbayo M, Socci ND, Kirchoff T et al (2007) A polymorphism in HDM2 (SNP309) associates with early onset in superficial tumors, TP53 mutations, and poor outcome in invasive bladder cancer. Clin Cancer Res 13:3215–3220PubMedCrossRefGoogle Scholar
  55. 55.
    Erill N, Colomer A, Verdu M et al (2004) Genetic and immunophenotype analyses of TP53 in bladder cancer: TP53 alterations are associated with tumor progression. Diagn Mol Pathol 13:217–223PubMedCrossRefGoogle Scholar
  56. 56.
    Gicquel C, Bertagna X, Gaston V et al (2001) Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res 61:6762–6767PubMedGoogle Scholar
  57. 57.
    Gicquel C, Bertagna X, Schneid H et al (1994) Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors. J Clin Endocrinol Metab 78:1444–1453PubMedCrossRefGoogle Scholar
  58. 58.
    Giordano TJ, Thomas DG, Kuick R et al (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162:521–531PubMedGoogle Scholar
  59. 59.
    de Fraipont F, El Atifi M, Cherradi N et al (2005) Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic. Acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 90:1819–1829PubMedCrossRefGoogle Scholar
  60. 60.
    Slater EP, Diehl SM, Langer P et al (2006) Analysis by cDNA microarrays of gene expression patterns of human adrenocortical tumors. Eur J Endocrinol 154:587–598PubMedCrossRefGoogle Scholar
  61. 61.
    Boulle N, Logie A, Gicquel C, Perin L, Le Bouc Y (1998) Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 83:1713–1720PubMedCrossRefGoogle Scholar
  62. 62.
    Weber MM, Fottner C, Schmidt P et al (1999) Postnatal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis. Endocrinology 140:1537–1543PubMedCrossRefGoogle Scholar
  63. 63.
    Barzon L, Pasquali C, Grigoletto C, Pedrazzoli S, Boscaro M, Fallo F (2001) Multiple endocrine neoplasia type 1 and adrenal lesions. J Urol 166:24–27PubMedCrossRefGoogle Scholar
  64. 64.
    Skogseid B, Larsson C, Lindgren PG et al (1992) Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 75:76–81PubMedCrossRefGoogle Scholar
  65. 65.
    Burgess JR, Harle RA, Tucker P et al (1996) Adrenal lesions in a large kindred with multiple endocrine neoplasia type 1. Arch Surg 131:699–702PubMedGoogle Scholar
  66. 66.
    Waldmann J, Bartsch DK, Kann PH, Fendrich V, Rothmund M, Langer P (2007) Adrenal involvement in multiple endocrine neoplasia type 1: results of 7 years prospective screening. Langenbecks Arch Surg 392:437–443PubMedCrossRefGoogle Scholar
  67. 67.
    Heppner C, Reincke M, Agarwal SK et al (1999) MEN1 gene analysis in sporadic adrenocortical neoplasms. J Clin Endocrinol Metab 84:216–219PubMedCrossRefGoogle Scholar
  68. 68.
    Zwermann O, Beuschlein F, Mora P, Weber G, Allolio B, Reincke M (2000) Multiple endocrine neoplasia type 1 gene expression is normal in sporadic adrenocortical tumors. Eur J Endocrinol 142:689–695PubMedCrossRefGoogle Scholar
  69. 69.
    Schulte KM, Heinze M, Mengel M et al (1999) MEN I gene mutations in sporadic adrenal adenomas. Hum Genet 105:603–610PubMedCrossRefGoogle Scholar
  70. 70.
    Schulte KM, Mengel M, Heinze M et al (2000) Complete sequencing and messenger ribonucleic acid expression analysis of the MEN I gene in adrenal cancer. J Clin Endocrinol Metab 85:441–448PubMedCrossRefGoogle Scholar
  71. 71.
    Baumgartner-Parzer SM, Pauschenwein S, Waldhausl W, Polzler K, Nowotny P, Vierhapper H (2002) Increased prevalence of heterozygous 21-OH germline mutations in patients with adrenal incidentalomas. Clin Endocrinol (Oxf) 56:811–816CrossRefGoogle Scholar
  72. 72.
    Kjellman M, Holst M, Backdahl M, Larsson C, Farnebo LO, Wedell A (1999) No overrepresentation of congenital adrenal hyperplasia in patients with adrenocortical tumours. Clin Endocrinol (Oxf) 50:343–346CrossRefGoogle Scholar
  73. 73.
    Beuschlein F, Schulze E, Mora P et al (1998) Steroid 21-hydroxylase mutations and 21-hydroxylase messenger ribonucleic acid expression in human adrenocortical tumors. J Clin Endocrinol Metab 83:2585–2588PubMedCrossRefGoogle Scholar
  74. 74.
    Bossis I, Stratakis CA (2004) Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 145:5452–5458PubMedCrossRefGoogle Scholar
  75. 75.
    Bertherat J, Groussin L, Sandrini F et al (2003) Molecular and functional analysis of PRKAR1A and its locus (17q22–24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Res 63:5308–5319PubMedGoogle Scholar
  76. 76.
    Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM (1991) Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325:1688–1695PubMedCrossRefGoogle Scholar
  77. 77.
    Schwindinger WF, Francomano CA, Levine MA (1992) Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci USA 89:5152–5156PubMedCrossRefGoogle Scholar
  78. 78.
    Lania A, Mantovani G, Spada A (2001) G protein mutations in endocrine diseases. Eur J Endocrinol 145:543–559PubMedCrossRefGoogle Scholar
  79. 79.
    Happle R (1986) The McCune–Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet 29:321–324PubMedCrossRefGoogle Scholar
  80. 80.
    Kirschner LS (2002) Signaling pathways in adrenocortical cancer. Ann NY Acad Sci 968:222–239PubMedCrossRefGoogle Scholar
  81. 81.
    Lyons J, Landis CA, Harsh G et al (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659PubMedCrossRefGoogle Scholar
  82. 82.
    Rosenberg D, Groussin L, Bertagna X, Bertherat J (2002) cAMP pathway alterations from the cell surface to the nucleus in adrenocortical tumors. Endocr Res 28:765–775PubMedCrossRefGoogle Scholar
  83. 83.
    Lumbroso S, Paris F, Sultan C (2002) McCune–Albright syndrome: molecular genetics. J Pediatr Endocrinol Metab 15(Suppl 3):875–882PubMedGoogle Scholar
  84. 84.
    Kirschner LS, Carney JA, Pack SD et al (2000) Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 26:89–92PubMedCrossRefGoogle Scholar
  85. 85.
    Rocha KM, Forti FL, Lepique AP, Armelin HA (2003) Deconstructing the molecular mechanisms of cell cycle control in a mouse adrenocortical cell line: roles of ACTH. Microsc Res Tech 61:268–274PubMedCrossRefGoogle Scholar
  86. 86.
    Beuschlein F, Reincke M (2006) Adrenocortical tumorigenesis. Ann NY Acad Sci 1088:319–334PubMedCrossRefGoogle Scholar
  87. 87.
    Fragoso MC, Domenice S, Latronico AC et al (2003) Cushing’s syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol Metab 88:2147–2151PubMedCrossRefGoogle Scholar
  88. 88.
    Latronico AC, Reincke M, Mendonca BB et al (1995) No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms. J Clin Endocrinol Metab 80:875–877PubMedCrossRefGoogle Scholar
  89. 89.
    Light K, Jenkins PJ, Weber A et al (1995) Are activating mutations of the adrenocorticotropin receptor involved in adrenal cortical neoplasia? Life Sci 56:1523–1527PubMedCrossRefGoogle Scholar
  90. 90.
    Reincke M, Mora P, Beuschlein F, Arlt W, Chrousos GP, Allolio B (1997) Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis. J Clin Endocrinol Metab 82:3054–3058PubMedCrossRefGoogle Scholar
  91. 91.
    Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433PubMedCrossRefGoogle Scholar
  92. 92.
    Collu GM, Brennan K (2007) Cooperation between Wnt and Notch signalling in human breast cancer. Breast Cancer Res 9:105PubMedCrossRefGoogle Scholar
  93. 93.
    Clements WM, Wang J, Sarnaik A et al (2002) beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 62:3503–3506PubMedGoogle Scholar
  94. 94.
    Kolligs FT, Bommer G, Goke B (2002) Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis. Digestion 66:131–144PubMedCrossRefGoogle Scholar
  95. 95.
    Clements WM, Lowy AM, Groden J (2003) Adenomatous polyposis coli/beta-catenin interaction and downstream targets: altered gene expression in gastrointestinal tumors. Clin Colorectal Cancer 3:113–120PubMedCrossRefGoogle Scholar
  96. 96.
    Tissier F, Cavard C, Groussin L et al (2005) Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 65:7622–7627PubMedGoogle Scholar
  97. 97.
    Doghman M, Cazareth J, Lalli E (2008) The T cell factor/beta-catenin antagonist PKF115–584 inhibits proliferation of adrenocortical carcinoma cells. J Clin Endocrinol Metab 93:3222–3225PubMedCrossRefGoogle Scholar
  98. 98.
    Gaujoux S, Tissier F, Groussin L, et al (2008) Wnt/ss-catenin and cAMP/PKA signaling pathways alterations and somatic ss-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab (in press)Google Scholar
  99. 99.
    Tadjine M, Lampron A, Ouadi L, Horvath A, Stratakis CA, Bourdeau I (2008) Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease. Clin Endocrinol (Oxf) 69:367–373CrossRefGoogle Scholar
  100. 100.
    Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 97:11960–11965PubMedCrossRefGoogle Scholar
  101. 101.
    Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO (2006) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281:9971–9976PubMedCrossRefGoogle Scholar
  102. 102.
    Hino S, Tanji C, Nakayama KI, Kikuchi A (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25:9063–9072PubMedCrossRefGoogle Scholar
  103. 103.
    Gicquel C, Leblond-Francillard M, Bertagna X et al (1994) Clonal analysis of human adrenocortical carcinomas and secreting adenomas. Clin Endocrinol (Oxf) 40:465–477CrossRefGoogle Scholar
  104. 104.
    Beuschlein F, Reincke M, Karl M et al (1994) Clonal composition of human adrenocortical neoplasms. Cancer Res 54:4927–4932PubMedGoogle Scholar
  105. 105.
    Blanes A, Diaz-Cano SJ (2006) DNA and kinetic heterogeneity during the clonal evolution of adrenocortical proliferative lesions. Hum Pathol 37:1295–1303PubMedCrossRefGoogle Scholar
  106. 106.
    Soon PS, Libe R, Benn DE et al (2008) Loss of heterozygosity of 17p13, with possible involvement of ACADVL and ALOX15B, in the pathogenesis of adrenocortical tumors. Ann Surg 247:157–164PubMedCrossRefGoogle Scholar
  107. 107.
    Stojadinovic A, Brennan MF, Hoos A et al (2003) Adrenocortical adenoma and carcinoma: histopathological and molecular comparative analysis. Mod Pathol 16:742–751PubMedCrossRefGoogle Scholar
  108. 108.
    Schmitt A, Saremaslani P, Schmid S et al (2006) IGFII and MIB1 immunohistochemistry is helpful for the differentiation of benign from malignant adrenocortical tumours. Histopathology 49:298–307PubMedCrossRefGoogle Scholar
  109. 109.
    Gupta D, Shidham V, Holden J, Layfield L (2001) Value of topoisomerase II alpha, MIB-1, p53, E-cadherin, retinoblastoma gene protein product, and HER-2/neu immunohistochemical expression for the prediction of biologic behavior in adrenocortical neoplasms. Appl Immunohistochem Mol Morphol 9:215–221PubMedCrossRefGoogle Scholar
  110. 110.
    Volante M, Sperone P, Bollito E et al (2006) Matrix metalloproteinase type 2 expression in malignant adrenocortical tumors: Diagnostic and prognostic significance in a series of 50 adrenocortical carcinomas. Mod Pathol 19:1563–1569PubMedCrossRefGoogle Scholar
  111. 111.
    Kjellman M, Enberg U, Hoog A et al (1999) Gelatinase A and membrane-type 1 matrix metalloproteinase mRNA: expressed in adrenocortical cancers but not in adenomas. World J Surg 23:237–242PubMedCrossRefGoogle Scholar
  112. 112.
    Kolomecki K, Stepien H, Bartos M, Kuzdak K (2001) Usefulness of VEGF, MMP-2, MMP-3 and TIMP-2 serum level evaluation in patients with adrenal tumours. Endocr Regul 35:9–16PubMedGoogle Scholar
  113. 113.
    Parker KL, Schimmer BP (1997) Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18:361–377PubMedCrossRefGoogle Scholar
  114. 114.
    Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490PubMedCrossRefGoogle Scholar
  115. 115.
    Bland ML, Jamieson CA, Akana SF et al (2000) Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. Proc Natl Acad Sci USA 97:14488–14493PubMedCrossRefGoogle Scholar
  116. 116.
    Pianovski MA, Cavalli LR, Figueiredo BC et al (2006) SF-1 overexpression in childhood adrenocortical tumours. Eur J Cancer 42:1040–1043PubMedCrossRefGoogle Scholar
  117. 117.
    Kiiveri S, Liu J, Arola J et al (2005) Transcription factors GATA-6, SF-1, and cell proliferation in human adrenocortical tumors. Mol Cell Endocrinol 233:47–56PubMedCrossRefGoogle Scholar
  118. 118.
    Sasano H, Shizawa S, Suzuki T et al (1995) Transcription factor adrenal 4 binding protein as a marker of adrenocortical malignancy. Hum Pathol 26:1154–1156PubMedCrossRefGoogle Scholar
  119. 119.
    Parviainen H, Kiiveri S, Bielinska M et al (2007) GATA transcription factors in adrenal development and tumors. Mol Cell Endocrinol 265–266:17–22PubMedCrossRefGoogle Scholar
  120. 120.
    Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25PubMedCrossRefGoogle Scholar
  121. 121.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  122. 122.
    Brodsky SV, Mendelev N, Melamed M, Ramaswamy G (2007) Vascular density and VEGF expression in hepatic lesions. J Gastrointestin Liver Dis 16:373–377PubMedGoogle Scholar
  123. 123.
    Kamat AA, Merritt WM, Coffey D et al (2007) Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin Cancer Res 13:7487–7495PubMedCrossRefGoogle Scholar
  124. 124.
    Herve MA, Buteau-Lozano H, Vassy R et al (2008) Overexpression of vascular endothelial growth factor 189 in breast cancer cells leads to delayed tumor uptake with dilated intratumoral vessels. Am J Pathol 172:167–178PubMedCrossRefGoogle Scholar
  125. 125.
    Logan-Collins JM, Lowy AM, Robinson-Smith TM et al (2008) VEGF expression predicts survival in patients with peritoneal surface metastases from mucinous adenocarcinoma of the appendix and colon. Ann Surg Oncol 15:738–744PubMedCrossRefGoogle Scholar
  126. 126.
    de Fraipont F, El Atifi M, Gicquel C, Bertagna X, Chambaz EM, Feige JJ (2000) Expression of the angiogenesis markers vascular endothelial growth factor-A, thrombospondin-1, and platelet-derived endothelial cell growth factor in human sporadic adrenocortical tumors: correlation with genotypic alterations. J Clin Endocrinol Metab 85:4734–4741PubMedCrossRefGoogle Scholar
  127. 127.
    West AN, Neale GA, Pounds S et al (2007) Gene expression profiling of childhood adrenocortical tumors. Cancer Res 67:600–608PubMedCrossRefGoogle Scholar
  128. 128.
    Yoshimoto K, Iwahana H, Fukuda A, Sano T, Itakura M (1993) Rare mutations of the Gs alpha subunit gene in human endocrine tumors. Mutation detection by polymerase chain reaction-primer-introduced restriction analysis. Cancer 72:1386–1393PubMedCrossRefGoogle Scholar
  129. 129.
    Kjellman M, Kallioniemi OP, Karhu R et al (1996) Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res 56:4219–4223PubMedGoogle Scholar
  130. 130.
    Sidhu S, Marsh DJ, Theodosopoulos G et al (2002) Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 87:3467–3474PubMedCrossRefGoogle Scholar
  131. 131.
    Zhao J, Speel EJ, Muletta-Feurer S et al (1999) Analysis of genomic alterations in sporadic adrenocortical lesions. Gain of chromosome 17 is an early event in adrenocortical tumorigenesis. Am J Pathol 155:1039–45PubMedGoogle Scholar
  132. 132.
    Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S, Lichter P (2000) Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes Cancer 28:145–152PubMedCrossRefGoogle Scholar
  133. 133.
    Stephan EA, Chung TH, Grant CS et al (2008) Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol Cancer Ther 7:425–431PubMedCrossRefGoogle Scholar
  134. 134.
    Yano T, Linehan M, Anglard P et al (1989) Genetic changes in human adrenocortical carcinomas. J Natl Cancer Inst 81:518–523PubMedCrossRefGoogle Scholar
  135. 135.
    Soon PSH, Libe R, Benn DE et al (2008) Loss of Heterozygosity of 17p13, with possible involvement of ACADVL and ALOX15B, in the pathogenesis of adrenocortical tumors. Ann Surg 247:157–164PubMedCrossRefGoogle Scholar
  136. 136.
    Kjellman M, Roshani L, Teh BT et al (1999) Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. J Clin Endocrinol Metab 84:730–735PubMedCrossRefGoogle Scholar
  137. 137.
    Velazquez-Fernandez D, Laurell C, Geli J et al (2005) Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 138:1087–1094PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Kolling Institute of Medical Research, University of SydneySydneyAustralia
  2. 2.Department of Endocrine and Oncology SurgeryRoyal North Shore HospitalSt LeonardsAustralia

Personalised recommendations