Skip to main content

Modes of Action of Drugs Related to Narcolepsy: Pharmacology of Wake-Promoting Compounds and Anticataplectics

  • Chapter
  • First Online:
Narcolepsy

Abstract

The pharmacological treatments of excessive daytime sleepiness (EDS) of narcolepsy include amphetamine-like central nervous system (CNS) stimulants and modafinil (and its R-enantiomer). Other less often used stimulants are compounds with dopamine uptake inhibitions. Caffeine is the most commonly consumed CNS stimulant that may also be effective for mild EDS cases. These compounds do not improve cataplexy and other REM sleep abnormalities (hypnogogic hallucinations and sleep paralysis), and antidepressants (monoamine uptake inhibitors) are additionally used for the treatment of cataplexy and REM sleep abnormalities. Gamma-hydroxybutyrate (GHB, a short-acting sedative) given at night reduces both EDS and cataplexy.

In this review, modes of actions proposed for the therapeutic compounds for narcolepsy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones BE. Basic mechanism of sleep-wake states. In: Kryger MH, Roth T, Dement WC, eds. Principles and Practice of Sleep Medicine 4th ed. Philadelphia: Elsevier Saunders; 2005:136-53.

    Google Scholar 

  2. Jouvet M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 1972;64:166-307.

    CAS  PubMed  Google Scholar 

  3. Nishino S, Mignot E, Dement WC. Sedative-hypnotics. In: Schatzberg AF, Nemeroff CB, eds. Textbook of Psycho­pharmacology. 2 ed. Washington: American Psychiatric Press; 2004:651-84.

    Google Scholar 

  4. Steinfels GF, Heym J, Streckjer RE, Jacobs BJ. Behavioral correlates of dopaminergic activity in freely moving cats. Brain Res 1983;258:217-28.

    Article  CAS  PubMed  Google Scholar 

  5. Björklund A, Lindvall O. Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T, eds. Handbook of Chemical Neuroanatomy, Vol 2, Classical Transmitter in the CNS, Part I. Amsterdam: Elsevier; 1984:55-121.

    Google Scholar 

  6. Trulson ME. Simultaneous recording of substantia nigra neurons and voltammetric release of dopamine in the caudate of behaving cats. Brain Res Bull 1985;15:221-3.

    Article  CAS  PubMed  Google Scholar 

  7. Ljungberg T, Apicella P, Schultz W. Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 1992;67(1):145-63.

    CAS  PubMed  Google Scholar 

  8. Jones BE, Bobillier P, Pin C, Jouvet M. The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 1973;58:157-77.

    Article  CAS  PubMed  Google Scholar 

  9. Lu J, Jhou TC, Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 2006;26(1):193-202.

    Article  CAS  PubMed  Google Scholar 

  10. Moller JC, Stiasny K, Cassel W, Peter JH, Kruger HP, Oertel WH. [“Sleep attacks” in Parkinson patients. A side effect of nonergoline dopamine agonists or a class effect of dopamine agonists?]. Nervenarzt 2000;71(8):670-6.

    Google Scholar 

  11. Hartmann A, Cravens J. Sleep: effect of d- and l-amphetamine in man and rat. Psychopharmacology 1976;50:171-5.

    Article  CAS  PubMed  Google Scholar 

  12. Kuczenski R, Segal DS. Neurochemistry of amphetamine. In: Cho AK, Segel DS, eds. Psychopharmacology, Toxicology and Abuse. San Diego: Academic; 1994:81-113.

    Google Scholar 

  13. Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A. Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 2003;278(14):12070-7.

    Google Scholar 

  14. Segal DS, Kuczenski R. Behavioral pharmacology of amphetamine. In: Cho AK, Segal DS, eds. Amphetamine and its Analogs: Psychopharmacology, Toxicology and Abuse. San Diego: Academic; 1994:115-50.

    Google Scholar 

  15. Nishino S, Mignot E. Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol 1997;52(1):27-78.

    Article  CAS  PubMed  Google Scholar 

  16. Parkes JD, Baraitser M, Marsden CD, Asselman P. Natural history, symptoms and treatment of the narcoleptic syndrome. Acta Neurol Scand 1975;52:337-53.

    Article  CAS  PubMed  Google Scholar 

  17. Nishino S, Mao J, Sampathkumaran R, Shelton J, Mignot E. Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res Online 1998;1:49–61. http://www.sro.org/1998/Nishino/49/.

    Google Scholar 

  18. Kanbayashi T, Nishino S, Honda K, Shelton J, Dement WC, Mignot E. Differential effects of D-and L-amphetamine isomers on dopaminergic transmission: implication for the control of alertness in canine narcolepsy. Sleep Res 1997;26:383.

    Google Scholar 

  19. Kuczenski R, Segal DS, Cho A, Melega W. Hippocampus norepinephrine, caudate dopamine and serotonin and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 1995;15:1308-17.

    CAS  PubMed  Google Scholar 

  20. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci 2001;21(5):1787-94.

    CAS  PubMed  Google Scholar 

  21. Xu F, Gainetdinov RR, Wetsel WC, et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 2000;3(5):465-71.

    Article  CAS  PubMed  Google Scholar 

  22. Honda K, Riehl J, Mignot E, Nishino S. Dopamine D3 agonists into the substantia nigra aggravate cataplexy but do not modify sleep. Neuroreport 1999;10(17):3717-24.

    Article  CAS  PubMed  Google Scholar 

  23. Mignot E, Nishino S, Guilleminault C, Dement WC. Modafinil binds to the dopamine uptake carrier site with low affinity. Sleep 1994;17:436-7.

    CAS  PubMed  Google Scholar 

  24. NuvigilTM (armodafinil) Tablets prescribing information. (Accessed at http://www.cephalon.com/newsroom/assets/nuvigil_prescribing_information.pdf)

  25. Tanganelli S, Fuxe K, Ferraro L, Jansen AM. Inhibitory effects of the psychoactive drug modafinil on gamma-aminobutyric acid outflow from the cerebral cortex of the awake freely moving guinea pig. Arch Pharmacol 1992;345:461-5.

    Article  CAS  Google Scholar 

  26. Lin JS, Roussel B, Akaoka H, Fort P, Debilly G, Jouvet M. Role of catecholamines in modafinil and amphetamine induced wakefulness, a comparative pharmacological study. Brain Res 1992;591:319-26.

    Article  CAS  PubMed  Google Scholar 

  27. Ferraro L, Tananelli S, O’Connor WT, Antonelli T, Rambert F, Fuxe K. The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. Eur J Pharmacol 1996;306:33-9.

    Article  CAS  PubMed  Google Scholar 

  28. Duteil J, Rambert FA, Pessonnier J, Hermant J, Gombert R, Assous E. Central a1-adrenergic stimulation in relation to the behaviour stimulating effect of modafinil: studies with experimental animals. Eur J Pharmacol 1990;180:49-58.

    Article  CAS  PubMed  Google Scholar 

  29. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsy­chopharmacology 2008;33(7):1477-502.

    Google Scholar 

  30. Dopheide MM, Morgan RE, Rodvelt KR, Schachtman TR, Miller DK. Modafinil evokes striatal [(3)H]dopamine release and alters the subjective properties of stimulants. Eur J Pharmacol 2007;568(1-3):112-23.

    Article  CAS  PubMed  Google Scholar 

  31. Shelton J, Nishino S, Vaught J, Dement WC, Mignot E. Comparative effects of modafinil and amphetamine on daytime sleepiness and cataplexy of narcoleptic dogs. Sleep 1995;18:817-26.

    CAS  PubMed  Google Scholar 

  32. Nishino S, Fruhstorfer B, Arrigoni J, Guilleminault C, Dement WC, Mignot E. Further characterization of the alpha-1 receptor subtype involved in the control of cataplexy in canine narcolepsy. J Pharmacol Exp Ther 1993;264:1079-84.

    CAS  PubMed  Google Scholar 

  33. Wisor JP, Eriksson KS. Dopaminergic-adrenergic interactions in the wake promoting mechanism of modafinil. Neuroscience 2005;132(4):1027-34.

    Article  CAS  PubMed  Google Scholar 

  34. Parmentier R, Anaclet C, Guhennec C, et al. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem Pharmacol 2007;73(8):1157-71.

    Article  CAS  PubMed  Google Scholar 

  35. Korotkova TM, Klyuch BP, Ponomarenko AA, Lin JS, Haas HL, Sergeeva OA. Modafinil inhibits rat midbrain dopaminergic neurons through D2-like receptors. Neuropharmacology 2007;52(2):626-33.

    Article  CAS  PubMed  Google Scholar 

  36. Nissbrandt N, Engberg G, Pileblad E. The effects of GBR 12909, a dopamine re-uptake inhibitor, on monoaminergic neurotransmission in rat striatum, limbic forebrain, cortical hemispheres and substantia nigra. Naunyn-Schmiedebergs Arch Pharmacol 1991;344:16-28.

    CAS  PubMed  Google Scholar 

  37. Ciliax BJ, Heilman C, Demchyshyn LL, et al. The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 1995;15(3):1714-23.

    CAS  PubMed  Google Scholar 

  38. Lin JS, Hou Y, Jouvet M. Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cats. Proc Natl Acad Sci USA 1996;93:14128-33.

    Article  CAS  PubMed  Google Scholar 

  39. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999;98:437-51.

    Article  CAS  PubMed  Google Scholar 

  40. Scammell TE, Estabrooke IV, McCarthy MT, et al. Hypo­halamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 2000;20(22):8620-8.

    CAS  PubMed  Google Scholar 

  41. Ishizuka T, Sakamoto Y, Sakurai T, Yamatodani A. Modafinil increases histamine release in the anterior hypothalamus of rats. Neurosci Lett 2003;339(2):143-6.

    Article  CAS  PubMed  Google Scholar 

  42. Gallopin T, Luppi PH, Rambert FA, Frydman A, Fort P. Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. Sleep 2004;27(1):19-25.

    PubMed  Google Scholar 

  43. Madras BK, Xie Z, Lin Z, et al. Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 2006;319(2):561-9.

    Article  CAS  PubMed  Google Scholar 

  44. Nishino S, Okuro M. Armodafinil for excessive daytime sleepiness. Drugs Today (Barc) 2008;44(6):395-414.

    Article  CAS  Google Scholar 

  45. Iijima S, Sugita Y, Teshima Y, Hishikawa Y. Therapeutic effects of mazindol on narcolepsy. Sleep 1986;9(1):265-8.

    CAS  PubMed  Google Scholar 

  46. Nishino S, Mao J, Sampathkumaran R, Shelton J, Dement WC, Mignot E. Adrenergic, but not dopaminergic, uptake inhibition reduces REM sleep and cataplexy concomitantly. Sleep Res 1997;26:445.

    Google Scholar 

  47. Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD. Adenosine analogs and sleep in rats. J Pharmacol Exp Ther 1984;228(2):268-74.

    CAS  PubMed  Google Scholar 

  48. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 1997;276(5316):1265-8.

    Article  CAS  PubMed  Google Scholar 

  49. Huang ZL, Qu WM, Eguchi N, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 2005;8(7):858-9.

    CAS  PubMed  Google Scholar 

  50. Siegel JM. Brainstem mechanisms generating REM sleep. In: Kryger MH, Roth T, Dement WC, eds. Principles and Practice of Sleep Medicine. Philadelphia: W. B. Saunders Company; 2000:112-33.

    Google Scholar 

  51. Nishino S, Taheri S, Black J, Nofzinger E, Mignot E. The neurobiology of sleep in relation to mental illness. In: Charney DS NE, ed. Neurobiology of Mental Illness. New York: Oxford University Press; 2004:1160-79.

    Google Scholar 

  52. Wu MF, Gulyani SA, Yau E, Mignot E, Phan B, Siegel JM. Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience 1999;91(4):1389-99.

    Article  CAS  PubMed  Google Scholar 

  53. John J, Wu MF, Boehmer LN, Siegel JM. Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 2004;42(4):619-34.

    Article  CAS  PubMed  Google Scholar 

  54. Mignot E, Renaud A, Nishino S, Arrigoni J, Guilleminault C, Dement WC. Canine cataplexy is preferentially controlled by adrenergic mechanisms: evidence using monoamine selective uptake inhibitors and release enhancers. Psychopharmacology 1993;113(1):76-82.

    Article  CAS  PubMed  Google Scholar 

  55. Peet M, Coppen A. The pharmacokinetics of antidepressant drugs: relevance to their therapeutic effect. In: Paykel ES, Coppen A, eds. Psychopharmacology of Affective Disorders. Oxford: Oxford University Press; 1979:91-107.

    Google Scholar 

  56. Nishino S, Arrigoni J, Shelton J, Dement WC, Mignot E. Desmethyl metabolites of serotonergic uptake inhibitors are more potent for suppressing canine cataplexy than their parent compounds. Sleep 1993;16(8):706-12.

    CAS  PubMed  Google Scholar 

  57. Baker TL, Dement WC. Canine narcolepsy-cataplexy syndrome: evidence for an inherited monoaminergic-cholinergic imbalance. In: McGinty DJ, Drucker-Colin R, Morrison A, Parmeggiani PL, eds. Brain Mechanisms of Sleep. New York: Raven; 1985:199-233.

    Google Scholar 

  58. Wu MF, John J, Boehmer LN, Yau D, Nguyen GB, Siegel JM. Activity of dorsal raphe cells across the sleep-waking cycle and during cataplexy in narcoleptic dogs. J Physiol 2004;554(Pt 1):202-15.

    Article  CAS  PubMed  Google Scholar 

  59. Nishino S, Haak L, Shepherd H, et al. Effects of central alpha-2 adrenergic compounds on canine narcolepsy, a disorder of rapid eye movement sleep. J Pharmacol Exp Ther 1990;253:1145-52.

    CAS  PubMed  Google Scholar 

  60. Nishino S, Arrigoni J, Valtier D, et al. Dopamine D2 mechanisms in canine narcolepsy. J Neurosci 1991;11:2666-71.

    CAS  PubMed  Google Scholar 

  61. Reid MS, Tafti M, Nishino S, et al. Local administration of dopaminergic drugs into the ventral tegmental area modulate cataplexy in the narcoleptic canine. Brain Res 1996;733:83-100.

    Article  CAS  PubMed  Google Scholar 

  62. Okura M, Riehl J, Mignot E, Nishino S. Sulpiride, a D2/D3 blocker, reduces cataplexy but not REM sleep in canine narcolepsy. Neuropsychopharmacology 2000;23(5):528-38.

    Article  CAS  PubMed  Google Scholar 

  63. Okura M, Fujiki N, Ripley B, et al. Narcoleptic canines display periodic leg movements during sleep. Psychiatry Clin Neurosci 2001;55(3):243-4.

    Article  CAS  PubMed  Google Scholar 

  64. Okura M, Fujiki N, Kita I, et al. The roles of midbrain and diencephalic dopamine cell groups in the regulation of cataplexy in narcoleptic Dobermans. Neurobiol Dis 2004;16(1):274-82.

    Article  CAS  PubMed  Google Scholar 

  65. Wyatt RJ, Fram DH, Buchbinder R, Snyder F. Treatment of intractable narcolepsy with a monoamine oxidase inhibitor. N Engl J Med 1971;285(18):987-91.

    Article  CAS  PubMed  Google Scholar 

  66. Gillin JC, Horwitz D, Wyatt RJ. Pharmacologic studies of narcolepsy involving serotonin, acetylcholine, and monoamine oxidase. In: Guilleminault C, Dement WC, Passouant P, eds. Narcolepsy (Advances in Sleep Research Vol 3). New York: Spectrum Publications; 1976:585-603.

    Google Scholar 

  67. Krishnan KRR. Monoamine oxidase inhibitors. In: Schatzberg AF, Nemeroff CB, eds. Textbook of Psycho­pharmacology. 2 ed. Washington: American Psychiatric Press; 2004:303-14.

    Google Scholar 

  68. Ranga K, Krishnan R. Monoamine oxidase inhibitors. In: Schatzberg AF, Nemeroff CB, eds. Textbook of Psycho­pharmacology. Washington: American Psychiatric Press; 1994:183-93.

    Google Scholar 

  69. Hohagen F, Mayer G, Memche A, et al. Treatment of narcolepsy-cataplexy syndrome with the new selective and reversible mao-a inhibitor brofaromine – a pilot study. J Sleep Res 1993;2:250-6.

    Article  PubMed  Google Scholar 

  70. Hublin C, Partinen M, Heinonen EH, Puukka P, Salmi T. Selegiline in the treatment of narcolepsy. Neurology 1994;44(11):2095-101.

    CAS  PubMed  Google Scholar 

  71. Nishino S, Arrigoni J, Kanbayashi T, Dement WC, Mignot E. Comparative effects of MAO-A and MAO-B selective inhibitors on canine cataplexy. Sleep Res 1996;25:315.

    Google Scholar 

  72. Broughton R, Mamelak M. The treatment of narcolepsy-cataplexy with nocturnal gamma-hydroxybutyrate. Can J Neurol Sci 1979;6(1):1-6.

    CAS  PubMed  Google Scholar 

  73. Mamelak M, Scharf MB, Woods M. Treatment of narcolepsy with g-hydroxybutyrate. A review of clinical and sleep laboratory findings. Sleep 1986;9(1):285-9.

    Google Scholar 

  74. Group USXMS. A randomized, double blind, placebo-controlled multicenter trial comparing the effects of three doses of orally administered sodium oxybate with placebo for the treatment of narcolepsy. Sleep 2002;25(1):42-9.

    Google Scholar 

  75. Group UXMS. A 12-month, open-label, multicenter extension trial of orally administered sodium oxybate for the treatment of narcolepsy. Sleep 2003;26(1):31-5.

    Google Scholar 

  76. Group UXMS. Sodium oxybate demonstrates long-term efficacy for the treatment of cataplexy in patients with narcolepsy. Sleep Med 2004;5(2):119-23.

    Article  Google Scholar 

  77. Group UXMS. A double-blind, placebo-controlled study demonstrates sodium oxybate is effective for the treatment of excessive daytime sleepiness in narcolepsy. J Clin Sleep Med 2005;1(4):391-7.

    Google Scholar 

  78. Laborit H, Buchard F, Laborit G, Kind A, Weber B. [Use of sodium 4-hydroxybutyrate in anesthesia and resuscitation.]. Agressologie 1960;1:549-60.

    CAS  PubMed  Google Scholar 

  79. Bessman SP, Fishbein WN. Gamma-hydroxybutyrate, a normal brain metabolite. Nature 1963;200:1207-8.

    Article  CAS  PubMed  Google Scholar 

  80. Maitre M. The gamma-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol 1997;51(3):337-61.

    Article  CAS  PubMed  Google Scholar 

  81. Snead OC, 3rd. The ontogeny of [3H]gamma-hydroxybutyrate and [3H]GABAB binding sites: relation to the deve­lopment of experimental absence seizures. Brain Res 1994;659(1-2):147-56.

    Article  PubMed  Google Scholar 

  82. Castelli MP, Mocci I, Langlois X, et al. Quantitative autoradiographic distribution of gamma-hydroxybutyric acid binding sites in human and monkey brain. Brain Res Mol Brain Res 2000;78(1-2):91-9.

    Article  CAS  PubMed  Google Scholar 

  83. Wong CG, Gibson KM, Snead OC, 3rd. From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol Sci 2004;25(1):29-34.

    Article  CAS  PubMed  Google Scholar 

  84. Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 2002;3(5):371-82.

    Article  CAS  PubMed  Google Scholar 

  85. Poldrugo F, Addolorato G. The role of gamma-hydroxybutyric acid in the treatment of alcoholism: from animal to clinical studies. Alcohol Alcohol 1999;34(1):15-24.

    CAS  PubMed  Google Scholar 

  86. Castelli MP, Pibiri F, Carboni G, Piras AP. A review of pharmacology of NCS-382, a putative antagonist of gamma-hydroxybutyric acid (GHB) receptor. CNS Drug Rev 2004;10(3):243-60.

    Article  CAS  PubMed  Google Scholar 

  87. Andriamampandry C, Taleb O, Viry S, et al. Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator gamma-hydroxybutyrate (GHB). FASEB J 2003;17(12):1691-3.

    CAS  PubMed  Google Scholar 

  88. Kemmel V, Taleb O, Perard A, et al. Neurochemical and electrophysiological evidence for the existence of a functional gamma-hydroxybutyrate system in NCB-20 neurons. Neuroscience 1998;86(3):989-1000.

    Article  CAS  PubMed  Google Scholar 

  89. Kemmel V, Taleb O, Andriamampandry C, Aunis D, Maitre M. Gamma-hydroxybutyrate receptor function determined by stimulation of rubidium and calcium movements from NCB-20 neurons. Neuroscience 2003;116(4):1021-31.

    Article  CAS  PubMed  Google Scholar 

  90. American Narcolepsy Association. Stimulant medication survey. Eye Opener 1992;5:1–3.

    Google Scholar 

  91. Kanbayashi T, Honda K, Kodama T, Mignot E, Nishino S. Implication of dopaminergic mechanisms in the wake-promoting effects of amphetamine: a study of D- and L-derivatives in canine narcolepsy. Neuroscience 2000;99(4):651-9.

    Article  CAS  PubMed  Google Scholar 

  92. Wong CG, Chan KF, Gibson KM, Snead OC. Gamma-hydroxybutyric acid: neurobiology and toxicology of a recreational drug. Toxicol Rev 2004;23(1):3-20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Nishino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nishino, S. (2010). Modes of Action of Drugs Related to Narcolepsy: Pharmacology of Wake-Promoting Compounds and Anticataplectics. In: Goswami, M., Pandi-Perumal, S., Thorpy, M. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0854-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0854-4_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0853-7

  • Online ISBN: 978-1-4419-0854-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics