Skip to main content
Book cover

Narcolepsy pp 251–265Cite as

Overview of Management of Narcolepsy

  • Chapter
  • First Online:

Abstract

Narcolepsy is a chronic sleep disorder that is characterized by excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. Since these symptoms are often disabling, most patients need lifelong treatments. Non-pharmacological treatments (i.e., behavioral modification) are often helpful for the clinical management of narcoleptic patients. However, over 90% of diagnosed narcoleptic patients are reported to take medications to control their symptoms. Traditionally, the amphetamine-like CNS stimulants have been used for clinical management to improve EDS, and trycyclic antidepressants as anticataplectics, but the treatment has evolved recently with new and better-tolerated compounds such as modafinil (and its r-enantiomer, armodafinil) for EDS and adrenergic/serotonergic selective reuptake inhibitors as anticataplectics. Nighttime administration of a short-acting sedative, gamma-hydroxybutyrate (sodium oxybate in the USA) has also been used for the treatment for EDS and cataplexy. Since a large majority of human narcolepsy patients are hypocretin peptide-deficient, hypocretin replacement therapy may also be a new therapeutic option, but this is still not available for human patients. If hypocretin replacement is effective in hypocretin-deficient narcolepsy, cell transplantation and/or gene therapy may be developed in the near future. In this review, we first describe clinical symptoms of narcolepsy, and then the state-of-the-art knowledge about both pharmacological and non-pharmacological treatments of narcolepsy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hublin C, Kaprio J, Partinene M, et al. The prevalence of narcolepsy: an epidemiological study of the Finnish twin cohort. Ann Neurol 1994;35:709–16.

    Article  CAS  PubMed  Google Scholar 

  2. Mignot E. Genetic and familial aspects of narcolepsy. Neurology 1998;50(suppl 1):S16–S22.

    Google Scholar 

  3. ICSD-2, ed. ICSD-2-International classification of sleep disorders, 2nd ed.:. Diagnostic and coding manual. Westchester, Illinois: American Academy of Sleep Medicine 2005.

    Google Scholar 

  4. Beusterien KM, Rogers AE, Walsleben JA, et al. Health-related quality of life effects of modafinil for treatment of narcolepsy. Sleep 1999;22(6):757–65.

    CAS  PubMed  Google Scholar 

  5. Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 2002;59(10):1553–62.

    Article  PubMed  Google Scholar 

  6. Nishino S, Kanbayashi T. Symptomatic narcolepsy, cataplexy and hypersomnia, and their implications In the hypothalamic hypocretin/orexin system. Sleep Med Rev 2005;9(4):269–310.

    Google Scholar 

  7. Nishino S, Mignot E. Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol 1997;52(1):27–78.

    Article  CAS  PubMed  Google Scholar 

  8. Honda Y. Clinical features of narcolepsy: Japanese experience. In: Honda Y, Juji T, eds. HLA in narcolepsy. New York: Springer-Verlag; 1988:24–57.

    Google Scholar 

  9. Rogers AE. Problems and coping strategies identified by narcoleptic patients. J Neurosurg Nursing 1984;16(6):326–34.

    CAS  Google Scholar 

  10. Roehrs T, Zorick F, Wittig R, Paxton C, Sicklesteel J, Roth T. Alerting effects of naps in patients with narcolepsy. Sleep 1986;9(1):194–9.

    CAS  PubMed  Google Scholar 

  11. Garma L, Marchand F. Non-pharmacological approaches to the treatment of narcolepsy. Sleep 1994;17:S97–S102.

    CAS  PubMed  Google Scholar 

  12. Association AN. Stimulant medication survey. Eye Opener 1992:1–3.

    Google Scholar 

  13. Kuczenski R, Segal DS, Cho AK, Melega W. Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 1995;15(2):1308–17.

    CAS  PubMed  Google Scholar 

  14. Snyder SH, Taylor KM, Coyle JT, Meyerhoff JL. The role of brain dopamine in behavioral regulation and the actions of psychotropic drugs. Am J Psychiatry 1970;127(2):199–207.

    CAS  PubMed  Google Scholar 

  15. Mitler MM, Aldrich MS, Koob GF, Zarcone VP. Narcolepsy and its treatment with stimulants. ASDA standards of practice. Sleep 1994;17(4):352–71.

    Google Scholar 

  16. Morgenthaler TI, Kapur VK, Brown T, et al. Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin. Sleep 2007;30(12):1705–11.

    PubMed  Google Scholar 

  17. Mitler MM, Hajdukovic R. Relative efficacy of drugs for the treatment of sleepiness in narcolepsy. Sleep 1991;14(3):218–20.

    CAS  PubMed  Google Scholar 

  18. Simpson LL. Blood pressure and heart rate responses produced by d-amphetamine: correlation with blood levels of drug. J Pharmacol Exp Ther 1978;205(2):366–73.

    CAS  PubMed  Google Scholar 

  19. Akimoto H, Honda Y, Takahashi Y. Pharmacotherapy in narcolepsy. Dis Nerv Syst 1960;21:704–6.

    CAS  PubMed  Google Scholar 

  20. Parkes JD, Baraitser M, Marsden CD, Asselman P. Natural history, symptoms and treatment of the narcoleptic syndrome. Acta Neurol Scand 1975;52:337–53.

    Article  CAS  PubMed  Google Scholar 

  21. Guilleminault C, Carskadon M, Dement WC. On the treatment of rapid eye movement narcolepsy. Arch Neurol 1974;30:90–3.

    CAS  PubMed  Google Scholar 

  22. Passouant P, Billiard M. The evolution of narcolepsy with age. In: Guilleminault C, Dement WC, Passouant P, eds. Narcolepsy. New York: Spectrum; 1976:179–86.

    Google Scholar 

  23. Rogers AE, Aldrich MS, Berrios AM, Rosenberg RS. Compliance with stimulant medications in patients with narcolepsy. Sleep 1997;20(1):28–33.

    CAS  PubMed  Google Scholar 

  24. Prinzmetal M, Bloomberg W. The use of benzedrine for the treatment of narcolepsy. J Am Med Assoc 1935;105:2051–4.

    CAS  Google Scholar 

  25. Alles GA. The comparative physiological actions of d 1-beta-phenylisopropylamines: pressor effects and toxicity. J Pharmacol Exp Ther 1933;47:339–54.

    CAS  Google Scholar 

  26. Parkes JD, Fenton GW. Levo(−) amphetamine and dextro(+) amphetamine in the treatment of narcolepsy. J Neurol Neurosurg Psychiatry 1973;36(6):1076–81.

    Article  CAS  PubMed  Google Scholar 

  27. Parkes D. Amphetamines and other drugs. In: Sleep and its disorders. London: W.B. Saunders Company; 1985:459–82.

    Google Scholar 

  28. Parkes D. Amphetamines and alertness. In: Guilleminault C, Dement WC, Passouant P, eds. Narcolepsy. New York: Spectrum; 1976:643–58.

    Google Scholar 

  29. Williams RT, Caldwell RJ, Dreng LG. Comparative metabolism of some amphetamine in various species. In: Schneider SH, Esdin E, eds. Frontiers of catecholamine research. Oxford, England: Pergamon; 1973:927–32.

    Google Scholar 

  30. Beckett AH, Rowland M, Turner P. Influence of urinary Ph on excretion of amphetamine. Lancet 1965;1(7380):303.

    Article  CAS  PubMed  Google Scholar 

  31. Yoss RE, Daly D. Treatment of narcolepsy with ritalin. Neurology 1959;9(3):171–3.

    CAS  PubMed  Google Scholar 

  32. Pawluk LK, Hurwitz TD, Schluter JL, Ullevig C, Mahowald MW. Psychiatric morbidity in narcoleptics on chronic high dose methylphenidate therapy. J Nerv Ment Dis 1995;183(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  33. Goenechea S, Wagner GM. [Quantitative determination of pemoline in serum and urine after ingestion of therapeutic doses (author’s transl)]. Arzneimittelforschung 1977;27(8): 1604–5.

    CAS  PubMed  Google Scholar 

  34. Berkovitch M, Pope E, Phillips J, Koren G. Pemoline-associated fulminant liver failure: testing the evidence for causation. Clin Pharmacol Ther 1995;57(6):696–8.

    Article  CAS  PubMed  Google Scholar 

  35. Shevell M, Schreiber R. Pemoline-associated hepatic failure: a critical analysis of the literature. Pediatr Neurol 1997;16(1):14–6.

    Article  CAS  PubMed  Google Scholar 

  36. Bastuji H, Jouvet M. Successful treatment of idiopathic hypersomnia and narcolepsy with modafinil. Prog Neuropsychopharmacol Biol Psychiatry 1988;12(5): 695–700.

    Article  CAS  PubMed  Google Scholar 

  37. Besset A, Tafti M, Villemin E, Billiard M. [The effects of modafinil (300mg) on sleep, sleepiness and arousal in narcoleptic patients]. Neurophysiol Clin 1993;23(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  38. Boivin DB, Montplaisir J, Petit D, Lambert C, Lubin S. Effects of modafinil on symptomatology of human narcolepsy. Clin Neuropharmacol 1993;16(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  39. Randomized trial of modafinil as a treatment for the excessive daytime somnolence of narcolepsy: US Modafinil in Narcolepsy Multicenter Study Group. Neurology 2000;54(5): 1166–75.

    Google Scholar 

  40. Broughton RJ, Fleming JA, George CF, et al. Randomized, double-blind, placebo-controlled crossover trial of modafinil in the treatment of excessive daytime sleepiness in narcolepsy. Neurology 1997;49(2):444–51.

    CAS  PubMed  Google Scholar 

  41. Wong YN, King SP, Laughton WB, McCormick GC, Grebow PE. Single-dose pharmacokinetics of modafinil and methylphenidate given alone or in combination in healthy male volunteers. J Clin Pharmacol 1998;38(3):276–82.

    CAS  PubMed  Google Scholar 

  42. Wong YN, Simcoe D, Hartman LN, et al. A double-blind, placebo-controlled, ascending-dose evaluation of the pharmacokinetics and tolerability of modafinil tablets in healthy male volunteers. J Clin Pharmacol 1999;39(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  43. Wong YN, King SP, Simcoe D, et al. Open-label, single-dose pharmacokinetic study of modafinil tablets: influence of age and gender in normal subjects. J Clin Pharmacol 1999;39(3):281–8.

    CAS  PubMed  Google Scholar 

  44. Robertson P, Jr., Hellriegel ET. Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet 2003;42(2): 123–37.

    Article  CAS  PubMed  Google Scholar 

  45. Hermant JF, Rambert FA, Deuteil J. Lack of cardiovascular effects after administration of modafinil in conscious monkeys. In: French Association des Pharmacologistes Tours, 1991: Fundam Clin Pharmacol; 1991:825.

    Google Scholar 

  46. Gold LH, Balster RL. Evaluation of the cocaine-like discriminative stimulus effects and reinforcing effects of modafinil. Psychopharmacology (Berl) 1996;126(4): 286–92.

    Article  CAS  Google Scholar 

  47. Edgar DM, Seidel WF, Contreras P, Vaught JL, Dement WC. Modafinil promotes EEG wake without intensifying motor activity in the rat. Can J Physiol Pharmacol 1994; 72(S1):362.

    Google Scholar 

  48. Harsh JR, Hayduk R, Rosenberg R, et al. The efficacy and safety of armodafinil as treatment for adults with excessive sleepiness associated with narcolepsy. Curr Med Res Opin 2006;22(4):761–74.

    Article  CAS  PubMed  Google Scholar 

  49. Iijima S, Sugita Y, Teshima Y, Hishikawa Y. Therapeutic effects of mazindol on narcolepsy. Sleep 1986;9(1, Part 2):265–8.

    CAS  PubMed  Google Scholar 

  50. Nishino S, Mao J, Sampathkumaran R, Shelton J. Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res Online 1998;1(1):49–61.

    CAS  PubMed  Google Scholar 

  51. Hadler AJ. Mazindol, a new non-amphetamine anorexigenic agent. J Clin Pharmacol New Drugs 1972;12(11):453–8.

    CAS  PubMed  Google Scholar 

  52. Nishino S, Mao J, Sampathkumaran R, Shelton J, Mignot E. Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Research Online 1998;1:49–61. http://www.sro.org/1998/Nishino/49/.

  53. Rye DB, Dihenia B, Bliwise DL. Reversal of atypical depression, sleepiness, and REM-sleep propensity in narcolepsy with bupropion. Depress Anxiety 1998;7(2):92–5.

    Article  CAS  PubMed  Google Scholar 

  54. Sicard BA, Perault MC, Enslen M, Chauffard F, Vandel B, Tachon P. The effects of 600 mg of slow release caffeine on mood and alertness. Aviat Space Environ Med 1996;67(9):859–62.

    CAS  PubMed  Google Scholar 

  55. Rall TR. Central nervous system stimulants. In: Gilman AG, Goodman LS, Rall TW, Murad F, eds. The pharmacological basis of therapeutics, 7th Ed. New York: Pergamon; 1985:345–82.

    Google Scholar 

  56. Thorpy MJ, Snyder M, Aloe FS, Ledereich PS, Starz KE. Short-term triazolam use improves nocturnal sleep of narcoleptics. Sleep 1992;15(3):212–6.

    CAS  PubMed  Google Scholar 

  57. Scrima L, Johnson FH, Thomas EG, Hiller EE. The effects of gamma-hydroxybutyrate (GHB) on multiple sleep latency test (MSLT) in narcolepsy patients; a long term study. Sleep Res 1990;19:288.

    Google Scholar 

  58. Scrima L, Hartman PG, Johnson FH Jr, Hiller FC. Efficacy of gamma-hydroxybutyrate versus placebo in treating narcolepsy-cataplexy: double-blind subjective measures. Biol Psychiatry 1989;26(4):331–43.

    Article  CAS  PubMed  Google Scholar 

  59. Broughton R, Mamelak M. The treatment of narcolepsy-cataplexy with nocturnal gamma-hydroxybutyrate. Can J Neurol Sci 1979;6(1):1–6.

    CAS  PubMed  Google Scholar 

  60. Broughton R, Mamelak M. Gamma-hydroxybutyrate in the treatment of compound narcolepsy: a preliminary report. In: Guilleminault C, Dement WC, Passouant P, eds. Narcolepsy. New York: Spectrum; 1976:59–67.

    Google Scholar 

  61. Group UXMS. Sodium oxybate demonstrates long-term efficacy for the treatment of cataplexy in patients with narcolepsy. Sleep Med 2004;5(2):119–23.

    Article  Google Scholar 

  62. Group UXMS. A 12-month, open-label, multicenter extension trial of orally administered sodium oxybate for the treatment of narcolepsy. Sleep 2003;26(1):31–5.

    Google Scholar 

  63. Group USXMS. A randomized, double blind, placebo-controlled multicenter trial comparing the effects of three doses of orally administered sodium oxybate with placebo for the treatment of narcolepsy. Sleep 2002;25(1):42–9.

    Google Scholar 

  64. Group UXMS. A double-blind, placebo-controlled study demonstrates sodium oxybate is effective for the treatment of excessive daytime sleepiness in narcolepsy. J Clin Sleep Med 2005;1(4):391–7.

    Google Scholar 

  65. Chin MY, Kreutzer RA, Dyer JE. Acute poisoning from gamma-hydroxybutyrate in California. West J Med 1992; 156(4):380–4.

    CAS  PubMed  Google Scholar 

  66. Mack RB. Love potion number 8 1/2. Gamma-hydroxybutyrate poisoning. N C Med J 1993;54(5):232–3.

    Google Scholar 

  67. Bedard MA, Montplaisir J, Godbout R, Lapierre O. Nocturnal gamma-hydroxybutyrate. Effect on periodic leg movements and sleep organization of narcoleptic patients. Clin Neuropharmacol 1989;12(1):29–36.

    Google Scholar 

  68. Wong CG, Gibson KM, Snead OC III. From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol Sci 2004;25(1): 29–34.

    Article  CAS  PubMed  Google Scholar 

  69. Nicholson KL, Balster RL. GHB: a new and novel drug of abuse. Drug Alcohol Depend 2001;63(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  70. Palatini P, Tedeschi L, Frison G, et al. Dose-dependent absorption and elimination of gamma-hydroxybutyric acid in healthy volunteers. Eur J Clin Pharmacol 1993;45(4): 353–6.

    Article  CAS  PubMed  Google Scholar 

  71. Vickers MD. Gammahydroxybutyric acid. Int Anesthesiol Clin 1969;7(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  72. Lavie P, Peled R. Narcolepsy is a rare disease in Israel. Sleep 1987;10(6):608–9.

    CAS  PubMed  Google Scholar 

  73. Li J, Stokes SA, Woeckener A. A tale of novel intoxication: seven cases of gamma-hydroxybutyric acid overdose. Ann Emerg Med 1998;31(6):723–8.

    Article  CAS  PubMed  Google Scholar 

  74. Group UXMS. The abrupt cessation of therapeutically administered sodium oxybate (GHB) does not cause withdrawal symptoms. J Toxicol Clin Toxicol 2003;41(2): 131–5.

    Article  Google Scholar 

  75. Dyer JE, Roth B, Hyma BA. Gamma-hydroxybutyrate withdrawal syndrome. Ann Emerg Med 2001;37(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  76. Perez E, Chu J, Bania T. Seven days of gamma-hydroxybutyrate (GHB) use produces severe withdrawal. Ann Emerg Med 2006;48(2):219–20.

    Article  PubMed  Google Scholar 

  77. Henry GK, Hart RP, Kwentus JA, Sicola MJ. Effects of protriptyline on vigilance and information processing in narcolepsy. Psychopharmacology (Berl) 1988;95(1):109–12.

    Article  CAS  Google Scholar 

  78. Raynal D. Polygraphic aspects of narcolepsy. In: Guilemminault C, Dement WC, Passouant P, eds. Narcolepsy. New York: Spectrum; 1976:669–84.

    Google Scholar 

  79. Thorpy MJ, Goswami M. Treatment of narcolepsy. In: Thorpy MJ, ed. Handbook of sleep disorders. New York: Marcel Dekker; 1990:235–58.

    Google Scholar 

  80. Baldessarini RJ. How do antidepressants work? In: Davis JM, Mass JW, eds. The affective disorders. Wachington, DC: American Psychiatric Press; 1983:243–60.

    Google Scholar 

  81. Langdon N, Shindler J, Parkes JD, Bandak S. Fluoxetine in the treatment of cataplexy. Sleep 1986;9(2):371–3.

    CAS  PubMed  Google Scholar 

  82. Montplaisir J, Godbout R. Serotoninergic reuptake mechanisms in the control of cataplexy. Sleep 1986;9(1, Part 2):280–4.

    CAS  PubMed  Google Scholar 

  83. Schrader H, Kayed K, Bendixen Markset AC, Treidene HE. The treatment of accessory symptoms in narcolepsy: a double-blind cross-over study of a selective serotonin re-uptake inhibitor (femoxetine) versus placebo. Acta Neurol Scand 1986;74(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  84. Mignot E, Renaud A, Nishino S, Arrigoni J, Guilleminault C, Dement WC. Canine cataplexy is preferentially controlled by adrenergic mechanisms: evidence using monoamine selective uptake inhibitors and release enhancers. Psycho­pharmacology (Berl) 1993;113(1):76–82.

    Article  CAS  Google Scholar 

  85. Nishino S, Arrigoni J, Shelton J, Dement WC, Mignot E. Desmethyl metabolites of serotonergic uptake inhibitors are more potent for suppressing canine cataplexy than their parent compounds. Sleep 1993;16(8):706–12.

    CAS  PubMed  Google Scholar 

  86. Takahashi S. The action of tricyclics (alone or in combination with methylphenidate) upon several symptoms of narcolepsy. In: Guilleminault C, Dement WC, Passouant P, eds. Narcolepsy. New York: Spectrum Publication; 1976:625–38.

    Google Scholar 

  87. Koran LM, Raghavan S. Fluoxetine for isolated sleep paralysis. Psychosomatics 1993;34(2):184–7.

    CAS  PubMed  Google Scholar 

  88. Mamelak M, Scharf MB, Woods M. Treatment of narcolepsy with gamma-hydroxybutyrate. A review of clinical and sleep laboratory findings. Sleep 1986;9(1, Part 2):285–9.

    Google Scholar 

  89. Fujiki N, Ripley B, Yoshida Y, Mignot E, Nishino S. Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin ligand deficient narcoleptic dog. Sleep 2003;6(8):953–9.

    Google Scholar 

  90. Schatzberg SJ, Barrett J, Cutter Kl, Ling L, Mignot E. Case study: effect of hypocretin replacement therapy in a 3-year-old Weimaraner with narcolepsy. J Vet Int Med 2004;18(4):586–8.

    Google Scholar 

  91. Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA 2004;101(13):4649–54.

    Article  CAS  PubMed  Google Scholar 

  92. Mishima K, Fujiki N, Yoshida Y, et al. Hypocretin receptor expression in canine and murine narcolepsy models and in hypocretin-ligand deficient human narcolepsy. Sleep 2008;31(8):1119–26.

    PubMed  Google Scholar 

  93. Ripley B, Fujiki N, Okura M, Mignot E, Nishino S. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol Dis 2001;8(3):525–34.

    Article  CAS  PubMed  Google Scholar 

  94. Nishino S, Sakurai E, Nevsimalova A, Yoshida Y, Watanabe T, Yanai K, Mignot E. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. SLEEP 2009;32(2):175–180.

    Article  CAS  PubMed  Google Scholar 

  95. Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S, Shimizu T, Nishino S. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. SLEEP 2009;32(2):181–187.

    Google Scholar 

  96. Kanbayashi T, Kodama T, Hondo H, et al. CSF histamine and noradrenaline contents in narcolepsy and other sleep disorders. Sleep 2004;27(abstract supplement):A236.

    Google Scholar 

  97. Lin JS, Sakai K, Vanni-Mercier G, et al. Involvement of histaminergic neurons in arousal mechanisms demonstrated with H3-receptor ligands in the cat. Brain Res 1990;523(2):325–30.

    Article  CAS  PubMed  Google Scholar 

  98. Shiba T, Fujiki N, Wisor J, Edgar D, Sakurai T, Nishino S. Wake promoting effects of thioperamide, a histamine H3 antagonist in orexin/ataxin-3 narcoleptic mice. Sleep 2004;27 (suppl):A241–A242.

    Google Scholar 

  99. Parmentier R, Anaclet C, Guhennec C, et al. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem Pharmacol 2007;73(8): 1157–71.

    Article  CAS  PubMed  Google Scholar 

  100. Sharif NA, To ZP, Whiting RL. Analogs of thyrotropin-releasing hormone (TRH) : receptor affinities in brain, spinal cords, and pituitaries of different species. Neurochem Res 1991;16:95–103.

    Article  CAS  PubMed  Google Scholar 

  101. Riehl J, Honda K, Kwan M, Hong J, Mignot E, Nishino S. Chronic oral administration of CG-3703, a thyrotropin releasing hormone analog, increases wake and decreases cataplexy in canine narcolepsy. Neuropsychopharmacology 2000;23(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  102. Nishino S, Arrigoni J, Shelton J, et al. Effects of thyrotropin-releasing hormone and its analogs on daytime sleepiness and cataplexy in canine narcolepsy. J Neurosci 1997;17:6401–8.

    CAS  PubMed  Google Scholar 

  103. Nicoll RA. Excitatory action of TRH on spinal motoneurons. Nature 1977;265:242–3.

    Article  CAS  PubMed  Google Scholar 

  104. Sharp T, Bennett GW, Marsden CA. Thyrotropin-releasing hormone analogues increase dopamine release from slices of rat brain. J Neurochem 1982;39:1763–6.

    Article  CAS  PubMed  Google Scholar 

  105. Keller HH, Bartholini G, Pletscher A. Enhancement of cerebral noradrenaline turnover by thyrotropin-releasing hormone. Nature 1974;248:528–9.

    Article  CAS  PubMed  Google Scholar 

  106. Heuer H, Schafer MK, O’Donnell D, Walker P, Bauer K. Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J Comp Neurol 2000;428(2):319–36.

    Article  CAS  PubMed  Google Scholar 

  107. Broberger C, McCormick DA. Excitatory effects of thyrotropin releasing hormone in the thalamus. J Neurosci 2005;25:1664–1673.

    Google Scholar 

  108. Hara J, Gerashchenko D, Wisor JP, Sakurai T, Xie S, Kilduff TS. Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin. J Neurosci 2009; 29(12):3705–3714.

    Google Scholar 

  109. Parmentier R, Kolbaev S, Klyuch BP, Vandael D, Lin JS, Selbach O, Haas HL, Sergeeva OA, Excitation of Histaminergic tuberomamillary neurons by thyrotropin-releasing hormone. J Neurosci 2009; 29(14):4471– 4483.

    Google Scholar 

  110. Broberger C. Neurotransmitters switching the thalamus between sleep and arousal: functional effects and cellular mechanism. In: Showa University International Symposium for Life Science 1st Annual Meeting New Frontiers in Neuroscience Research, August 31, 2004, Showa University Kamijo Hall, Tokyo.

    Google Scholar 

  111. Okura M, Riehl J, Mignot E, Nishino S. Sulpiride, a D2/D3 blocker, reduces cataplexy but not REM sleep in canine narcolepsy. Neuropsychopharmacology 2000;23(5):528–38.

    Article  CAS  PubMed  Google Scholar 

  112. Bergstrom DL, Keller C. Narcolepsy: pathogenesis and nursing care. J Neurosci Nurs 1992;24(3):153–7.

    CAS  PubMed  Google Scholar 

  113. Parkes JD, Dahlitz M. Amphetamine prescription. Sleep 1993;16:201–3.

    CAS  PubMed  Google Scholar 

  114. Guilleminault C, Stoohs R, Clerk A. Daytime somnolence: therapeutic approaches. Neurophysiol Clin 1993;23(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  115. Mullington J, Broughton R. Scheduled naps in the management of daytime sleepiness in narcolepsy-cataplexy. Sleep 1993;16(5):444–56.

    CAS  PubMed  Google Scholar 

  116. Liu M, Thankachan S, Kaur S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Neve R, Shiromani PJ. 2008. Orexin (hypocretin) gene transferdiminishes narcoleptic sleep behavior in mice. Eur J Neurosci. 28, 1382–1393.

    Google Scholar 

  117. Arias-Carrion O, Murillo-Rodriguez E, Xu M, Blanco-Centurion C, Drucker-Colin R, Shiromani PJ. Transplant of hypocretin neurons into the pontine reticular formation: Preliminary results. Sleep 2004;27(8):1465–1470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Nishino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nishino, S., Kotorii, N. (2010). Overview of Management of Narcolepsy. In: Goswami, M., Pandi-Perumal, S., Thorpy, M. (eds) Narcolepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0854-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0854-4_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0853-7

  • Online ISBN: 978-1-4419-0854-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics