Skip to main content

Use of In Vivo Animal Models to Assess Drug–Drug Interactions

  • Chapter
  • First Online:
Book cover Enzyme- and Transporter-Based Drug-Drug Interactions

Abstract

In this chapter, theoretical basis and specific examples are presented to illustrate the utility of the animal models in assessing and understanding the underlying mechanisms of DDIs. In vivo assessments in an appropriate animal model are considered key to help verify in vivo relevance of in vitro studies and substantiate a basis for extrapolating in vitro human data to clinical outcomes. From a pharmacokinetic standpoint, an important consideration for successful selection of the animal model is based on broad similarities to humans in key physiological and biochemical parameters governing drug absorption, distribution, metabolism, or excretion (ADME) process of interest for both the interacted and the interacting drugs. Also equally important are specific in vitro and/or in vivo experiments demonstrating animal–human similarities, usually both qualitative and quantitative, in the ADME property/process under investigation. Additional insights can also be gained with the use of knockout animals lacking specific drug transporters or drug-metabolizing enzymes and/or transgenic animal models with humanized mouse lines expressing specific drug transporters and/or metabolizing enzymes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carr B, Norcross R, Fang YL, Lu P, Rodrigues AD, Shou MG, Rushmore T and Booth-Genthe C (2006) Characterization of the rhesus monkey CYP3A64 enzyme: Species comparisons of CYP3A substrate specificity and kinetics using baculovirus-expressed recombinant enzymes. Drug Metab Dispos 34:1703–1712.

    Article  CAS  PubMed  Google Scholar 

  • Chu XY, Strauss JR, Mariano MA, Li J, Newton DJ, Cai X, Wang RW, Yabut J, Hartley DP, Evans DC and Evers R (2006) Characterization of mice lacking the multidrug resistance protein Mrp2 (Abcc2). J Pharmacol Exp Ther 317:579–589.

    Article  CAS  PubMed  Google Scholar 

  • Custodio J, Wu C and Benet LZ (2008) Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Delivery Rev 60:717–733.

    Article  CAS  Google Scholar 

  • Gibson GG, Plant NJ, Swales KE, Ayrton A and El-Sankary W (2002) Receptor-dependent transcriptional activation of cytochrome P450 3A genes: induction, mechanisms, species differences and interindividual variations in man. Xenobiotica 32:165–206.

    Article  CAS  PubMed  Google Scholar 

  • Graham MJ and Lake BG (2008) Induction of drug metabolism: species differences and toxicological relevance. Toxicology 254:184–191.

    Article  CAS  PubMed  Google Scholar 

  • Herédi-Szabó K, Glavinas H, Kis E, Méhn D, Báthori G, Veres Z, Kóbori L, von Richter O, Jemnitz K and Krajcsi P (2009) Multidrug Resistance Protein 2-mediated estradiol-17β-d-glucuronide transport potentiation: In vitro-in vivo correlation and species specificity. Drug Metab Dispos 37:794–801.

    Article  PubMed  Google Scholar 

  • Johnson BM, Zhang P, Schuetz JD and Brouwer KL (2006) Characterization of transport protein expression in multidrug resistance-associated protein (Mrp) 2-deficient rats. Drug Metab Dispos 34:556–562.

    Article  CAS  PubMed  Google Scholar 

  • Kanazu T, Yamaguchi Y, Okamura N, Baba T and Koike M (2004) Model for the drug–drug interaction responsible for CYP3A enzyme inhibition. I: evaluation of cynomolgus monkeys as surrogates for humans. Xenobiotica 34:391–402.

    Article  CAS  PubMed  Google Scholar 

  • Komura H and Iwaki M (2008) Species differences in in vitro and in vivo small intestinal metabolism of CYP3A substrates. J Pharm Sci 97:1775–1800.

    Article  CAS  PubMed  Google Scholar 

  • Konig J, Rost D, Cui Y and Keppler D (1999) Characterization of the human multidrug resistance protein isoform MRP3 localized in the basolateral hepatocyte membrane. Hepatology 29:1156–1163.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Samuel K, Subramanian R, Braun MP, Stearns RA, Chiu SL, Evans DC and Baillie TA (2002) Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide. J Pharmacol Exp Ther 303:969–978.

    Article  CAS  PubMed  Google Scholar 

  • Lam J, Shugarts S, Okochi H and Benet LZ (2007) Elucidating the effect of final-day dosing of rifampin in induction studies on hepatic drug disposition and metabolism. J Pharmacol Exp Ther 319:864–870.

    Article  Google Scholar 

  • Lenneräs H (2007) Animal data: the contributions of the Ussing chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Delivery Rev 59:1103–1120.

    Article  Google Scholar 

  • Lentz KA, Quitko M, Morgan DG, Grace JE, Gleason C and Marathe PH (2007) Development and validation of a preclinical food effect model. J Pharm Sci 96:459–472.

    Article  CAS  PubMed  Google Scholar 

  • Lin JH (1995) Species similarities and differences in pharmacokinetics. Drug Metab Dispos 23:1008–1021.

    CAS  PubMed  Google Scholar 

  • Lin JH (2004) How significant is the role of P-glycoprotein in drug absorption and brain uptake? Drugs Today 40:5–22.

    Article  CAS  PubMed  Google Scholar 

  • Lin JH (2008) Applications and limitations of genetically modified mouse models in drug discovery and development. Curr Drug Metab 9:419–438.

    Article  CAS  PubMed  Google Scholar 

  • Lin JH and Lu AHY (1998) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449.

    CAS  Google Scholar 

  • Mandlekar SV, Rose AV, Cornelius G, Sleczka B, Caporuscio C, Wang J and Marathe PH (2007) Development of an in vivo rat screen model to predict pharmacokinetic interactions of CYP3A4 substrates. Xenobiotica 37:923–942.

    Article  CAS  PubMed  Google Scholar 

  • Marathe PH and Rodrigues AD (2006) In vivo animal models for investigating potential CYP3A-and Pgp-mediated drug–drug interactions. Curr Drug Metab 7:687–704.

    Article  CAS  PubMed  Google Scholar 

  • Martignoni M, Groothuis GMM and de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894.

    Article  CAS  PubMed  Google Scholar 

  • McConnell EL, Basit AW and Murdan S (2008) Measurements of rat and mouse gastrointestinal pH fluid and lymphoid tissue, and implications for in-vivo experiments. J Pharm Pharmacol 60:63–70.

    Article  CAS  PubMed  Google Scholar 

  • Newton DJ, Wang RW and Evans DC (2005) Determination of phase I metabolic enzyme activities in liver microsomes of Mrp2 deficient TR and EHBR rats. Life Sci 77:1106–1115.

    Article  CAS  PubMed  Google Scholar 

  • Paulson SK, Vaughn MB, Jessen SM, Lawal Y, Gresk CJ, Yan B, Maziasz TJ, Cook CS and Karim A (2001) Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther 297:638–645.

    CAS  PubMed  Google Scholar 

  • Prueksaritanont T, Gorham LM, Hochman JH, Tran L and Vyas KP (1996) Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab Dispos 24:634–642.

    CAS  PubMed  Google Scholar 

  • Prueksaritanont T, Hochman JH, Meng Y, Pudvah NT, Barrish A, Ma B, Yamazaki M, Fernandez-Metzler C and Lin JH (2004) Renal elimination of a novel and potent αvβ3 antagonist in animals. Xenobiotica 34:1059–1074.

    Article  CAS  PubMed  Google Scholar 

  • Prueksaritanont T, Kuo Y, Tang C, Li C, Qiu Y, Lu B, Strong-Basalyga K, Richards K, Carr B and Lin JH (2006a) In vitro and in vivo CYP3A64 induction and inhibition studies in rhesus monkeys: a preclinical approach for CYP3A-mediated drug interaction studies. Drug Metab Dispos 34:1546–1555.

    Article  CAS  PubMed  Google Scholar 

  • Prueksaritanont T, Li C, Kuo Y, Tang C, Strong-Basalyga K and Carr B (2006b) Rifampin induces the in vitro oxidative metabolism, but not the in vivo clearance of Diclofenac in rhesus monkeys. Drug Metab Dispos 34:1806–1810.

    Article  CAS  PubMed  Google Scholar 

  • Prueksaritanont T, Subramanian R Fang X, Ma B, Qiu, Y, Lin JH, Pearson PG, and Baillie TA (2002) Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos 30:505–512.

    Article  CAS  PubMed  Google Scholar 

  • Roller S, Cui D, Laspina C, Miller-Stein C, Rowe J, Wong B and Prueksaritanont T (2009) Preclinical pharmacokinetics of MK-0974, an orally active calcitonin-gene related peptide (CGRP)-receptor antagonist, mechanism of dose dependency and species differences. Xenobiotica 39:33–45.

    Article  CAS  PubMed  Google Scholar 

  • Sharer JE, Shipley LA, Vandenbranden MR, Binkley SN and Wrighton SA (1995) Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey. Drug Metab Dispos 23:1231–1241.

    CAS  PubMed  Google Scholar 

  • Tahara H, Kusuhara H, Chida M, Fuse E and Sugiyama Y (2006) Is the monkey an appropriate animal model to examine drug–drug interactions involving renal clearance? Effect of probenecid on the renal elimination of H-2 receptor antagonists. J Pharmacol Exp Ther 316:1187–1194.

    Article  CAS  PubMed  Google Scholar 

  • Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E and Sugiyama Y (2005a) A species difference in the transport activities of H-2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther 315:337–345.

    Article  CAS  PubMed  Google Scholar 

  • Tahara H, Shono M, Kusuhara H, Kinoshita H, Fuse E, Takadate A, Otagiri M and Sugiyama Y (2005b) Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney. Pharm Res 22:647–660.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Washio T, Suzuki N, Igeta K, Fujii Y, Hayashi M, Shirasaka Y and Yamashita S (2008) Characterization of gastrointestinal drug absorption in cynomolgus monkeys. Mol Pharmaceutics 5:340–348.

    Article  CAS  Google Scholar 

  • Tang C, Carr BA, Poignant F, Ma B, Polsky-Fisher S, Kuo Y, Strong-Basalyga K, Norcross A, Richards K, Eisenhandler R, Carlini E, Ng C, Kuduk S, Yu N, Raab C, Rushmore TH, Frederick CB, Bock MG and Prueksaritanont T (2008) CYP2C75-involved autoinduction of metabolism in rhesus monkeys of MK-0686, a Bradykinin B1 receptor antagonist. J Pharmacol Exp Ther 325:935–946.

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Fang Y, Booth-Genthe C, Kuo Y, Kuduk S, Rushmore T and Carr BA (2007) Diclofenac hydroxylation in monkeys: efficiency, regioselectivity, and response to inhibitors. Biochem Pharmacol 73:880–890.

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Kuo Y, Pudvah NT, Ellis JD, Michener MS, Egbertson M, Graham SL, Cook JJ, Hochman J and Prueksaritanont T (2009) Effect of P-Glycoprotein-mediated Efflux on Cerebrospinal Fluid Concentrations in Rhesus Monkeys. Biochem Pharmacol 78:642–647.

    Google Scholar 

  • Uno Y, Hiroko S, Shotaro U, Takayuki K, Kiyomi M, Chika N, Go K, Tetsuya K and Ryoichi N (2006) A null allele impairs function of CYP2C76 gene in cynomolgus monkeys: a possible genetic tool for generation of a better animal model in drug metabolism. Mol Pharmacol 70:477–486.

    Article  CAS  PubMed  Google Scholar 

  • van de Steeg E, van der Kruijssen CMM, Wagenaar E, Burggraaff JEC, Mesman E, Kenworthy KE and Schinkel AH (2009) Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos 37:277–281.

    Article  PubMed  Google Scholar 

  • Weaver RJ (2001) Assessment of drug–drug interactions: concepts and approaches. Xenobiotica 31:499–538.

    Article  CAS  PubMed  Google Scholar 

  • Williams ET, Schouest KR, Leyk M and Strobel HW (2007) The chimpanzee cytochrome P450 3A subfamily: is our closest related species really that similar? Comp Biochem Physiol D-Genom & Proteom 2:91–100.

    Google Scholar 

  • Wong H, Grace JE, Wright MR, Browning MR, Grossman SJ, Bai SA and Christ DD (2006) Glucuronidation in the chimpanzee (Pan troglodytes): studies with acetaminophen, oestradiol and morphine. Xenobiotica 36:1178–1190.

    Article  CAS  PubMed  Google Scholar 

  • Wong H Grossman SJ, Bai SA, Diamond S, Wright MR, Grace JE, Qian MX, He K, Yeleswaram K and Christ DD (2004) The chimpanzee (Pan troglodytes) as a pharmacokinetic model for selection of drug candidates: model characterization and application. Drug Metab Dispos 32:1359–1369.

    Article  CAS  PubMed  Google Scholar 

  • Worboys PD and Carlile DJ (2001) Implications and consequences of enzyme induction on preclinical and clinical drug development. Xenobiotica 31:539–556.

    Article  CAS  PubMed  Google Scholar 

  • Xia CQ, Xiao GQ, Liu N, Pimprale S, Fox L, Patten CJ, Crespi CL, Miwa G and Gan LS (2006) Comparison of species differences of P-glycoproteins in beagle dog, rhesus monkey, and human using ATPase activity assays. Mol Pharmaceutics 3:78–86.

    Article  CAS  Google Scholar 

  • Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa K, Tallman MN and Brouwer KLR (2006) Integration of hepatic drug transporters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 27:447–486.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomayant Prueksaritanont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prueksaritanont, T. (2010). Use of In Vivo Animal Models to Assess Drug–Drug Interactions. In: Pang , K., Rodrigues, A., Peter, R. (eds) Enzyme- and Transporter-Based Drug-Drug Interactions. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0840-7_11

Download citation

Publish with us

Policies and ethics