Skip to main content

Proteoglycans and Cancer

  • Chapter
  • First Online:

Abstract

Proteoglycans are ubiquitous molecules composed of glycosamino-glycan chains attached covalently to core proteins. Proteoglycans perform a myriad of functions and participate in regulating tumor cell growth, survival, adhesion, metastasis and angiogenesis. These functions are largely mediated through inter-actions between their charged glycosaminoglycan chains and effector proteins such as growth factors, cytokines and chemokines. In addition, emerging data is revealing that the core proteins of proteoglycans can also form complexes with other proteins such as integrins and regulate their signaling. Because proteoglycans are at the crossroads of many signaling events, they are currently being extensively investigated for their potential as therapeutic targets for cancer. This review focuses on the expression, structure and function of proteoglycans in cancer and provides an overview of the field as well as specific examples of how these diverse molecules regulate tumor behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aikawa T, Whipple CA, Lopez ME, Gunn J, Young A, Lander AD, Korc M (2008) Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest 118:89–99

    CAS  PubMed  Google Scholar 

  • Alexander CM, Reichsman F, Hinkes MT, Lincecum J, Becker KA, Cumberledge S, Bernfield M (2000) Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 25:329–332

    CAS  PubMed  Google Scholar 

  • Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 12:107R–116R

    CAS  PubMed  Google Scholar 

  • Anttila MA, Tammi RH, Tammi MI, Syrjanen KJ, Saarikoski SV, Kosma VM (2000) High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res 60:150–155

    CAS  PubMed  Google Scholar 

  • Auvinen P, Tammi R, Parkkinen J, Tammi M, Agren U, Johansson R, Hirvikoski P, Eskelinen M, Kosma VM (2000) Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol 156:529–536

    CAS  PubMed  Google Scholar 

  • Aviel-Ronen S, Lau SK, Pintilie M, Lau D, Liu N, Tsao MS, Jothy S (2008) Glypican-3 is overexpressed in lung squamous cell carcinoma, but not in adenocarcinoma. Mod Pathol 21:817–825

    CAS  PubMed  Google Scholar 

  • Barbareschi M, Maisonneuve P, Aldovini D, Cangi MG, Pecciarini L, Angelo Mauri F, Veronese S, Caffo O, Lucenti A, Palma PD, Galligioni E, Doglioni C (2003) High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer 98:474–483

    PubMed  Google Scholar 

  • Baumgartner G, Gomar-Hoss C, Sakr L, Ulsperger E, Wogritsch C (1998) The impact of extracellular matrix on the chemoresistance of solid tumors – experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy. Cancer Lett 131:85–99

    CAS  PubMed  Google Scholar 

  • Bayer-Garner IB, Sanderson RD, Dhodapkar MV, Owens RB, Wilson CS (2001) Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod Pathol 14:1052–1058

    CAS  PubMed  Google Scholar 

  • Beauvais DM, Burbach BJ, Rapraeger AC (2004) The syndecan-1 ectodomain regulates alpha V beta 3 integrin activity in human mammary carcinoma cells. J Cell Biol 167:171–181

    CAS  PubMed  Google Scholar 

  • Beauvais DM, Rapraeger AC (2003) Syndecan-1-mediated cell spreading requires signaling by alpha(v)beta(3) integrins in human breast carcinoma cells. Exp Cell Res 286:219–232

    CAS  PubMed  Google Scholar 

  • Beauvais DM, Rapraeger AC (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol 2:3

    PubMed  Google Scholar 

  • Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    CAS  PubMed  Google Scholar 

  • Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8:365–393

    CAS  PubMed  Google Scholar 

  • Berto AG, Sampaio LO, Franco CR, Cesar RM Jr, Michelacci YM (2003) A comparative analysis of structure and spatial distribution of decorin in human leiomyoma and normal myometrium. Biochim Biophys Acta 1619:98–112

    CAS  PubMed  Google Scholar 

  • Bettelheim FA, Plessy B (1975) The hydration of proteoglycans of bovine cornea. Biochim Biophys Acta 381:203–214

    CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    CAS  PubMed  Google Scholar 

  • Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K (1995) The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55:434–439

    CAS  PubMed  Google Scholar 

  • Bix G, Castello R, Burrows M, Zoeller JJ, Weech M, Iozzo RA, Cardi C, Thakur ML, Barker CA, Camphausen K, Iozzo RV (2006) Endorepellin in vivo: targeting the tumor vasculature and retarding cancer growth and metabolism. J Natl Cancer Inst 98:1634–1646

    CAS  PubMed  Google Scholar 

  • Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S (2004) Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev Immunol 24:267–296

    CAS  PubMed  Google Scholar 

  • Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, Filmus J (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125:89–97

    CAS  PubMed  Google Scholar 

  • Capurro MI, Xiang YY, Lobe C, Filmus J (2005) Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res 65:6245–6254

    CAS  PubMed  Google Scholar 

  • Carbone A, Gloghini A, Gaidano G, Franceschi S, Capello D, Drexler HG, Falini B, Dalla-Favera R (1998) Expression status of BCL-6 and syndecan-1 identifies distinct histogenetic subtypes of Hodgkin’s disease. Blood 92:2220–2228

    CAS  PubMed  Google Scholar 

  • Cattaruzza S, Schiappacassi M, Kimata K, Colombatti A, Perris R (2004) The globular domains of PG-M/versican modulate the proliferation-apoptosis equilibrium and invasive capabilities of tumor cells. FASEB J 18:779–781

    CAS  PubMed  Google Scholar 

  • Cheng W, Tseng CJ, Lin TT, Cheng I, Pan HW, Hsu HC, Lee YM (2008) Glypican-3-mediated oncogenesis involves the IGF signaling pathway. Carcinogenesis 29:1319–1326

    CAS  PubMed  Google Scholar 

  • Chilosi M, Adami F, Lestani M, Montagna L, Cimarosto L, Semenzato G, Pizzolo G, Menestrina F (1999) CD138/syndecan-1: a useful immunohistochemical marker of normal and neoplastic plasma cells on routine trephine bone marrow biopsies. Mod Pathol 12:1101–1106

    CAS  PubMed  Google Scholar 

  • Conejo JR, Kleeff J, Koliopanos A, Matsuda K, Zhu ZW, Goecke H, Bicheng N, Zimmermann A, Korc M, Friess H, Buchler MW (2000) Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int J Cancer 88:12–20

    CAS  PubMed  Google Scholar 

  • Contreras HR, Fabre M, Granes F, Casaroli-Marano R, Rocamora N, Herreros AG, Reina M, Vilaro S (2001) Syndecan-2 expression in colorectal cancer-derived HT-29 M6 epithelial cells induces a migratory phenotype. Biochem Biophys Res Commun 286:742–751

    CAS  PubMed  Google Scholar 

  • Couchman JR (2003) Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 4:926–937

    CAS  PubMed  Google Scholar 

  • Couchman JR, Chen L, Woods A (2001) Syndecans and cell adhesion. Int Rev Cytol 207:113–150

    CAS  PubMed  Google Scholar 

  • Csordas G, Santra M, Reed CC, Eichstetter I, McQuillan DJ, Gross D, Nugent MA, Hajnoczky G, Iozzo RV (2000) Sustained down-regulation of the epidermal growth factor receptor by decorin. A mechanism for controlling tumor growth in vivo. J Biol Chem 275:32879–32887

    CAS  PubMed  Google Scholar 

  • Datta MW, Hernandez AM, Schlicht MJ, Kahler AJ, DeGueme AM, Dhir R, Shah RB, Farach-Carson C, Barrett A, Datta S (2006a) Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway. Mol Cancer 5:9

    PubMed  Google Scholar 

  • Datta S, Pierce M, Datta MW (2006b) Perlecan signaling: helping hedgehog stimulate prostate cancer growth. Int J Biochem Cell Biol 38:1855–1861

    CAS  PubMed  Google Scholar 

  • Davies EJ, Blackhall FH, Shanks JH, David G, McGown AT, Swindell R, Slade RJ, Martin-Hirsch P, Gallagher JT, Jayson GC (2004) Distribution and clinical significance of heparan sulfate proteoglycans in ovarian cancer. Clin Cancer Res 10:5178–5186

    CAS  PubMed  Google Scholar 

  • De Cat B, Muyldermans SY, Coomans C, Degeest G, Vanderschueren B, Creemers J, Biemar F, Peers B, David G (2003) Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J Cell Biol 163:625–635

    PubMed  Google Scholar 

  • Deed R, Rooney P, Kumar P, Norton JD, Smith J, Freemont AJ, Kumar S (1997) Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. Int J Cancer 71:251–256

    CAS  PubMed  Google Scholar 

  • Delpech B, Chevallier B, Reinhardt N, Julien JP, Duval C, Maingonnat C, Bastit P, Asselain B (1990) Serum hyaluronan (hyaluronic acid) in breast cancer patients. Int J Cancer 46:388–390

    CAS  PubMed  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    CAS  PubMed  Google Scholar 

  • Dolan M, Horchar T, Rigatti B, Hassell JR (1997) Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J Biol Chem 272:4316–4322

    CAS  PubMed  Google Scholar 

  • Enegd B, King JA, Stylli S, Paradiso L, Kaye AH, Novak U (2002) Overexpression of hyaluronan synthase-2 reduces the tumorigenic potential of glioma cells lacking hyaluronidase activity. Neurosurgery 50:1311–1318

    PubMed  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    CAS  PubMed  Google Scholar 

  • Ezura Y, Chakravarti S, Oldberg A, Chervoneva I, Birk DE (2000) Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J Cell Biol 151:779–788

    CAS  PubMed  Google Scholar 

  • Faassen AE, Schrager JA, Klein DJ, Oegema TR, Couchman JR, McCarthy JB (1992) A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J Cell Biol 116:521–531

    CAS  PubMed  Google Scholar 

  • Fears CY, Gladson CL, Woods A (2006) Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 281:14533–14536

    CAS  PubMed  Google Scholar 

  • Fears CY, Woods A (2006) The role of syndecans in disease and wound healing. Matrix Biol 25:443–456

    CAS  PubMed  Google Scholar 

  • Filmus J (2001) Glypicans in growth control and cancer. Glycobiology 11:19R–23R

    CAS  PubMed  Google Scholar 

  • Filmus J, Capurro M, Rast J (2008) Glypicans. Genome Biol 9:224

    PubMed  Google Scholar 

  • Franzmann EJ, Schroeder GL, Goodwin WJ, Weed DT, Fisher P, Lokeshwar VB (2003) Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int J Cancer 106:438–445

    CAS  PubMed  Google Scholar 

  • Friedrich MV, Gohring W, Morgelin M, Brancaccio A, David G, Timpl R (1999) Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J Mol Biol 294:259–270

    CAS  PubMed  Google Scholar 

  • Fukushima D, Butzow R, Hildebrand A, Ruoslahti E (1993) Localization of transforming growth factor beta binding site in betaglycan. Comparison with small extracellular matrix proteoglycans. J Biol Chem 268:22710–22715

    CAS  PubMed  Google Scholar 

  • Fullwood NJ, Davies Y, Nieduszynski IA, Marcyniuk B, Ridgway AE, Quantock AJ (1996) Cell surface-associated keratan sulfate on normal and migrating corneal endothelium. Invest Ophthalmol Vis Sci 37:1256–1270

    CAS  PubMed  Google Scholar 

  • Funderburgh JL (2000) Keratan sulfate: structure, biosynthesis, and function. Glycobiology 10:951–958

    CAS  PubMed  Google Scholar 

  • Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A 98:13784–13789

    CAS  PubMed  Google Scholar 

  • Ghatak S, Misra S, Toole BP (2002) Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 277:38013–38020

    CAS  PubMed  Google Scholar 

  • Gilg AG, Tye SL, Tolliver LB, Wheeler WG, Visconti RP, Duncan JD, Kostova FV, Bolds LN, Toole BP, Maria BL (2008) Targeting hyaluronan interactions in malignant gliomas and their drug-resistant multipotent progenitors. Clin Cancer Res 14:1804–1813

    CAS  PubMed  Google Scholar 

  • Gill MR, Oldberg A, Reinholt FP (2002) Fibromodulin-null murine knee joints display increased incidences of osteoarthritis and alterations in tissue biochemistry. Osteoarthritis Cartilage 10:751–757

    CAS  PubMed  Google Scholar 

  • Gonzalez AD, Kaya M, Shi W, Song H, Testa JR, Penn LZ, Filmus J (1998) OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson- Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol 141:1407–1414

    CAS  PubMed  Google Scholar 

  • Gori F, Schipani E, Demay MB (2001) Fibromodulin is expressed by both chondrocytes and osteoblasts during fetal bone development. J Cell Biochem 82:46–57

    CAS  PubMed  Google Scholar 

  • Granes F, Urena JM, Rocamora N, Vilaro S (2000) Ezrin links syndecan-2 to the cytoskeleton. J Cell Sci 113:1267–1276

    CAS  PubMed  Google Scholar 

  • Greiling H (1994) Structure and biological functions of keratan sulfate proteoglycans. EXS 70:101–122

    CAS  PubMed  Google Scholar 

  • Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6:530–541

    PubMed  Google Scholar 

  • Han I, Park H, Oh ES (2004) New insights into syndecan-2 expression and tumourigenic activity in colon carcinoma cells. J Mol Histol 35:319–326

    CAS  PubMed  Google Scholar 

  • Hanly AM, Hayanga A, Winter DC, Bouchier-Hayes DJ (2005) Thrombomodulin: tumour biology and prognostic implications. Eur J Surg Oncol 31:217–220

    CAS  PubMed  Google Scholar 

  • Hanly AM, Winter DC (2007) The role of thrombomodulin in malignancy. Semin Thromb Hemost 33:673–679

    CAS  PubMed  Google Scholar 

  • Hasengaowa JK, Kusumoto T, Shinyo Y, Seki N, Hiramatsu Y (2005) Prognostic significance of syndecan-1 expression in human endometrial cancer. Ann Oncol 16:1109–1115

    CAS  PubMed  Google Scholar 

  • Hempel N, How T, Dong M, Murphy SK, Fields TA, Blobe GC (2007) Loss of betaglycan expression in ovarian cancer: role in motility and invasion. Cancer Res 67:5231–5238

    CAS  PubMed  Google Scholar 

  • Henke CA, Roongta U, Mickelson DJ, Knutson JR, McCarthy JB (1996) Cd44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J Clin Invest 97:2541–2552

    CAS  PubMed  Google Scholar 

  • Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, Ruoslahti E (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302(Pt 2):527–534

    CAS  PubMed  Google Scholar 

  • Hsia E, Richardson TP, Nugent MA (2003) Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. J Cell Biochem 88:1214–1225

    CAS  PubMed  Google Scholar 

  • Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 61:8586–8594

    CAS  PubMed  Google Scholar 

  • Hunzelmann N, Schonherr E, Bonnekoh B, Hartmann C, Kresse H, Krieg T (1995) Altered immunohistochemical expression of small proteoglycans in the tumor tissue and stroma of basal cell carcinoma. J Invest Dermatol 104:509–513

    CAS  PubMed  Google Scholar 

  • Iida J, Meijne AM, Knutson JR, Furcht LT, McCarthy JB (1996) Cell surface chondroitin sulfate proteoglycans in tumor cell adhesion, motility and invasion. Semin Cancer Biol 7:155–162

    CAS  PubMed  Google Scholar 

  • Iida J, Pei D, Kang T, Simpson MA, Herlyn M, Furcht LT, McCarthy JB (2001) Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase-dependent human melanoma invasion into type I collagen. J Biol Chem 276:18786–18794

    CAS  PubMed  Google Scholar 

  • Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039

    CAS  PubMed  Google Scholar 

  • Inki P, Larjava H, Haapasalmi K, Miettinen HM, Grenman R, Jalkanen M (1994a) Expression of syndecan-1 is induced by differentiation and suppressed by malignant transformation of human keratinocytes. Eur J Cell Biol 63:43–51

    CAS  PubMed  Google Scholar 

  • Inki P, Stenback F, Grenman S, Jalkanen M (1994b) Immunohistochemical localization of syndecan-1 in normal and pathological human uterine cervix. J Pathol 172:349–355

    CAS  PubMed  Google Scholar 

  • Iolascon A, Giordani L, Borriello A, Carbone R, Izzo A, Tonini GP, Gambini C, Della Ragione F (2000) Reduced expression of transforming growth factor-beta receptor type III in high stage neuroblastomas. Br J Cancer 82:1171–1176

    CAS  PubMed  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    CAS  PubMed  Google Scholar 

  • Iozzo RV (1999) The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 274:18843–18846

    CAS  PubMed  Google Scholar 

  • Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 6:646–656

    CAS  PubMed  Google Scholar 

  • Ishihara M, Conrad HE (1989) Correlations between heparan sulfate metabolism and hepatoma growth. J Cell Physiol 138:467–476

    CAS  PubMed  Google Scholar 

  • Isogai Z, Shinomura T, Yamakawa N, Takeuchi J, Tsuji T, Heinegard D, Kimata K (1996) 2B1 antigen characteristically expressed on extracellular matrices of human malignant tumors is a large chondroitin sulfate proteoglycan, PG-M/versican. Cancer Res 56:3902–3908

    CAS  PubMed  Google Scholar 

  • Itano N, Kimata K (2008) Altered hyaluronan biosynthesis in cancer progression. Semin Cancer Biol 18:268–274

    CAS  PubMed  Google Scholar 

  • Itano N, Sawai T, Atsumi F, Miyaishi O, Taniguchi S, Kannagi R, Hamaguchi M, Kimata K (2004) Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem 279:18679–18687

    CAS  PubMed  Google Scholar 

  • Itano N, Sawai T, Miyaishi O, Kimata K (1999) Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res 59:2499–2504

    CAS  PubMed  Google Scholar 

  • Jakubovic BD, Jothy S (2007) Glypican-3: from the mutations of Simpson–Golabi–Behmel genetic syndrome to a tumor marker for hepatocellular carcinoma. Exp Mol Pathol 82:184–189

    CAS  PubMed  Google Scholar 

  • Jilani I, Wei C, Bekele BN, Zhang ZJ, Keating M, Wierda W, Ferrajoli A, Estrov Z, Kantarjian H, O’Brien SM, Giles FJ, Albitar M (2009) Soluble syndecan-1 (sCD138) as a prognostic factor independent of mutation status in patients with chronic lymphocytic leukemia. Int J Lab Hematol 31:97–105

    Google Scholar 

  • Jones LL, Tuszynski MH (2002) Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors. J Neurosci 22:4611–4624

    CAS  PubMed  Google Scholar 

  • Kato M, Saunders S, Nguyen H, Bernfield M (1995) Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell 6:559–576

    CAS  PubMed  Google Scholar 

  • Kato Y, Hayatsu N, Kaneko MK, Ogasawara S, Hamano T, Takahashi S, Nishikawa R, Matsutani M, Mishima K, Narimatsu H (2008) Increased expression of highly sulfated keratan sulfate synthesized in malignant astrocytic tumors. Biochem Biophys Res Commun 369:1041–1046

    CAS  PubMed  Google Scholar 

  • Kim H, Xu GL, Borczuk AC, Busch S, Filmus J, Capurro M, Brody JS, Lange J, D’Armiento JM, Rothman PB, Powell CA (2003) The heparan sulfate proteoglycan GPC3 is a potential lung tumor suppressor. Am J Respir Cell Mol Biol 29:694–701

    CAS  PubMed  Google Scholar 

  • Klatka J (2002) Syndecan-1 expression in laryngeal cancer. Eur Arch Otorhinolaryngol 259:115–118

    PubMed  Google Scholar 

  • Kleeff J, Ishiwata T, Kumbasar A, Friess H, Buchler MW, Lander AD, Korc M (1998) The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest 102:1662–1673

    CAS  PubMed  Google Scholar 

  • Kleeff J, Wildi S, Kumbasar A, Friess H, Lander AD, Korc M (1999) Stable transfection of a glypican-1 antisense construct decreases tumorigenicity in PANC-1 pancreatic carcinoma cells. Pancreas 19:281–288

    CAS  PubMed  Google Scholar 

  • Knudson W, Biswas C, Toole BP (1984) Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc Natl Acad Sci U S A 81:6767–6771

    CAS  PubMed  Google Scholar 

  • Knutson JR, Iida J, Fields GB, McCarthy JB (1996) CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell 7:383–396

    CAS  PubMed  Google Scholar 

  • Komori H, Nakatsura T, Senju S, Yoshitake Y, Motomura Y, Ikuta Y, Fukuma D, Yokomine K, Harao M, Beppu T, Matsui M, Torigoe T, Sato N, Baba H, Nishimura Y (2006) Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin Cancer Res 12:2689–2697

    CAS  PubMed  Google Scholar 

  • Kosaki R, Watanabe K, Yamaguchi Y (1999) Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res 59:1141–1145

    CAS  PubMed  Google Scholar 

  • Koyama H, Hibi T, Isogai Z, Yoneda M, Fujimori M, Amano J, Kawakubo M, Kannagi R, Kimata K, Taniguchi S, Itano N (2007) Hyperproduction of hyaluronan in neu-induced mammary tumor accelerates angiogenesis through stromal cell recruitment: possible involvement of versican/PG-M. Am J Pathol 170:1086–1099

    CAS  PubMed  Google Scholar 

  • Ladanyi A, Gallai M, Paku S, Nagy JO, Dudas J, Timar J, Kovalszky I (2001) Expression of a decorin-like moleculein human melanoma. Pathol Oncol Res 7:260–266

    CAS  PubMed  Google Scholar 

  • Leonard JG, Hale AH, Roll DE, Conrad HE, Weber MJ (1978) Turnover of cellular carbohydrates in normal and Rous sarcoma virus-transformed cells. Cancer Res 38:185–188

    CAS  PubMed  Google Scholar 

  • Lesley J, Hyman R, Kincade PW (1993) CD44 and its interaction with extracellular matrix. Adv Immunol 54:271–335

    CAS  PubMed  Google Scholar 

  • Levens E, Luo X, Ding L, Williams RS, Chegini N (2005) Fibromodulin is expressed in leiomyoma and myometrium and regulated by gonadotropin-releasing hormone analogue therapy and TGF-beta through Smad and MAPK-mediated signalling. Mol Hum Reprod 11:489–494

    CAS  PubMed  Google Scholar 

  • Leygue E, Snell L, Dotzlaw H, Hole K, Hiller-Hitchcock T, Roughley PJ, Watson PH, Murphy LC (1998) Expression of lumican in human breast carcinoma. Cancer Res 58:1348–1352

    CAS  PubMed  Google Scholar 

  • Li Y, Aoki T, Mori Y, Ahmad M, Miyamori H, Takino T, Sato H (2004) Cleavage of lumican by membrane-type matrix metalloproteinase-1 abrogates this proteoglycan-mediated suppression of tumor cell colony formation in soft agar. Cancer Res 64:7058–7064

    CAS  PubMed  Google Scholar 

  • Lin H, Huber R, Schlessinger D, Morin PJ (1999) Frequent silencing of the GPC3 gene in ovarian cancer cell lines. Cancer Res 59:807–810

    CAS  PubMed  Google Scholar 

  • Lin X (2004) Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131:6009–6021

    CAS  PubMed  Google Scholar 

  • Lipponen P, Aaltomaa S, Tammi R, Tammi M, Agren U, Kosma VM (2001) High stromal hyaluronan level is associated with poor differentiation and metastasis in prostate cancer. Eur J Cancer 37:849–856

    CAS  PubMed  Google Scholar 

  • Liu BY, McDermott SP, Khwaja SS, Alexander CM (2004) The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A 101:4158–4163

    CAS  PubMed  Google Scholar 

  • Liu N, Gao F, Han Z, Xu X, Underhill CB, Zhang L (2001) Hyaluronan synthase 3 overexpression promotes the growth of TSU prostate cancer cells. Cancer Res 61:5207–5214

    CAS  PubMed  Google Scholar 

  • Liu W, Litwack ED, Stanley MJ, Langford JK, Lander AD, Sanderson RD (1998) Heparan sulfate proteoglycans as adhesive and anti-invasive molecules: syndecans and glypican have distinct functions. J Biol Chem 273:22825–22832

    CAS  PubMed  Google Scholar 

  • Lokeshwar VB, Schroeder GL, Selzer MG, Hautmann SH, Posey JT, Duncan RC, Watson R, Rose L, Markowitz S, Soloway MS (2002) Bladder tumor markers for monitoring recurrence and screening comparison of hyaluronic acid-hyaluronidase and BTA-Stat tests. Cancer 95:61–72

    PubMed  Google Scholar 

  • Longley RL, Woods A, Fleetwood A, Cowling GJ, Gallagher JT, Couchman JR (1999) Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci 112:3421–3431

    CAS  PubMed  Google Scholar 

  • Lorente G, Nelson A, Mueller S, Kuo J, Urfer R, Nikolich K, Foehr ED (2005) Functional comparison of long and short splice forms of RPTPbeta: implications for glioblastoma treatment. Neuro Oncol 7:154–163

    CAS  PubMed  Google Scholar 

  • Lu YP, Ishiwata T, Kawahara K, Watanabe M, Naito Z, Moriyama Y, Sugisaki Y, Asano G (2002) Expression of lumican in human colorectal cancer cells. Pathol Int 52:519–526

    CAS  PubMed  Google Scholar 

  • Maeda T, Desouky J, Friedl A (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25:1408–1412

    CAS  PubMed  Google Scholar 

  • Marieb EA, Zoltan-Jones A, Li R, Misra S, Ghatak S, Cao J, Zucker S, Toole BP (2004) Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res 64:1229–1232

    CAS  PubMed  Google Scholar 

  • Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, Lander AD, Korc M (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res 61:5562–5569

    CAS  PubMed  Google Scholar 

  • McDermott SP, Ranheim EA, Leatherberry VS, Khwaja SS, Klos KS, Alexander CM (2007) Juvenile syndecan-1 null mice are protected from carcinogen-induced tumor development. Oncogene 26:1407–1416

    CAS  PubMed  Google Scholar 

  • Mikami S, Ohashi K, Usui Y, Nemoto T, Katsube K, Yanagishita M, Nakajima M, Nakamura K, Koike M (2001) Loss of syndecan-1 and increased expression of heparanase in invasive esophageal carcinomas. Jpn J Cancer Res 92:1062–1073

    CAS  PubMed  Google Scholar 

  • Misra S, Ghatak S, Toole BP (2005) Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2. J Biol Chem 280:20310–20315

    CAS  PubMed  Google Scholar 

  • Misra S, Ghatak S, Zoltan-Jones A, Toole BP (2003) Regulation of multidrug resistance in cancer cells by hyaluronan. J Biol Chem 278:25285–25288

    CAS  PubMed  Google Scholar 

  • Modrowski D, Orosco A, Thevenard J, Fromigue O, Marie PJ (2005) Syndecan-2 overexpression induces osteosarcoma cell apoptosis: implication of syndecan-2 cytoplasmic domain and JNK signaling. Bone 37:180–189

    CAS  PubMed  Google Scholar 

  • Motomura Y, Senju S, Nakatsura T, Matsuyoshi H, Hirata S, Monji M, Komori H, Fukuma D, Baba H, Nishimura Y (2006) Embryonic stem cell-derived dendritic cells expressing glypican-3, a recently identified oncofetal antigen, induce protective immunity against highly metastatic mouse melanoma, B16–F10. Cancer Res 66:2414–2422

    CAS  PubMed  Google Scholar 

  • Mundhenke C, Meyer K, Drew S, Friedl A (2002) Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 receptor binding in breast carcinomas. Am J Pathol 160:185–194

    CAS  PubMed  Google Scholar 

  • Munesue S, Kusano Y, Oguri K, Itano N, Yoshitomi Y, Nakanishi H, Yamashina I, Okayama M (2002) The role of syndecan-2 in regulation of actin-cytoskeletal organization of Lewis lung carcinoma-derived metastatic clones. Biochem J 363:201–209

    CAS  PubMed  Google Scholar 

  • Munesue S, Yoshitomi Y, Kusano Y, Koyama Y, Nishiyama A, Nakanishi H, Miyazaki K, Ishimaru T, Miyaura S, Okayama M, Oguri K (2007) A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J Biol Chem 282:28164–28174

    CAS  PubMed  Google Scholar 

  • Murthy SS, Shen T, De Rienzo A, Lee WC, Ferriola PC, Jhanwar SC, Mossman BT, Filmus J, Testa JR (2000) Expression of GPC3, an X-linked recessive overgrowth gene, is silenced in malignant mesothelioma. Oncogene 19:410–416

    CAS  PubMed  Google Scholar 

  • Nackaerts K, Verbeken E, Deneffe G, Vanderschueren B, Demedts M, David G (1997) Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer 74:335–345

    CAS  PubMed  Google Scholar 

  • Nakatsura T, Kageshita T, Ito S, Wakamatsu K, Monji M, Ikuta Y, Senju S, Ono T, Nishimura Y (2004a) Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res 10:6612–6621

    CAS  PubMed  Google Scholar 

  • Nakatsura T, Komori H, Kubo T, Yoshitake Y, Senju S, Katagiri T, Furukawa Y, Ogawa M, Nakamura Y, Nishimura Y (2004b) Mouse homologue of a novel human oncofetal antigen, glypican-3, evokes T-cell-mediated tumor rejection without autoimmune reactions in mice. Clin Cancer Res 10:8630–8640

    CAS  PubMed  Google Scholar 

  • Nakatsura T, Nishimura Y (2005) Usefulness of the novel oncofetal antigen glypican-3 for diagnosis of hepatocellular carcinoma and melanoma. BioDrugs 19:71–77

    CAS  PubMed  Google Scholar 

  • Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, Hosaka S, Beppu T, Ishiko T, Kamohara H, Ashihara H, Katagiri T, Furukawa Y, Fujiyama S, Ogawa M, Nakamura Y, Nishimura Y (2003) Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 306:16–25

    CAS  PubMed  Google Scholar 

  • Nash MA, Deavers MT, Freedman RS (2002) The expression of decorin in human ovarian tumors. Clin Cancer Res 8:1754–1760

    CAS  PubMed  Google Scholar 

  • Ohashi R, Takahashi F, Cui R, Yoshioka M, Gu T, Sasaki S, Tominaga S, Nishio K, Tanabe KK, Takahashi K (2007) Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett 252:225–234

    CAS  PubMed  Google Scholar 

  • Oldberg A, Kalamajski S, Salnikov AV, Stuhr L, Morgelin M, Reed RK, Heldin NE, Rubin K (2007) Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc Natl Acad Sci U S A 104:13966–13971

    CAS  PubMed  Google Scholar 

  • Orosco A, Fromigue O, Bazille C, Entz-Werle N, Levillain P, Marie PJ, Modrowski D (2007) Syndecan-2 affects the basal and chemotherapy-induced apoptosis in osteosarcoma. Cancer Res 67:3708–3715

    CAS  PubMed  Google Scholar 

  • Ota S, Hishinuma M, Yamauchi N, Goto A, Morikawa T, Fujimura T, Kitamura T, Kodama T, Aburatani H, Fukayama M (2006) Oncofetal protein glypican-3 in testicular germ-cell tumor. Virchows Arch 449:308–314

    CAS  PubMed  Google Scholar 

  • Park H, Kim Y, Lim Y, Han I, Oh ES (2002) Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem 277:29730–29736

    CAS  PubMed  Google Scholar 

  • Park Y, Rangel C, Reynolds MM, Caldwell MC, Johns M, Nayak M, Welsh CJ, McDermott S, Datta S (2003) Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev Biol 253:247–257

    CAS  PubMed  Google Scholar 

  • Perrimon N, Bernfield M (2001) Cellular functions of proteoglycans – an overview. Semin Cell Dev Biol 12:65–67

    CAS  PubMed  Google Scholar 

  • Ping Lu Y, Ishiwata T, Asano G (2002) Lumican expression in alpha cells of islets in pancreas and pancreatic cancer cells. J Pathol 196:324–330

    PubMed  Google Scholar 

  • Pirinen R, Tammi R, Tammi M, Hirvikoski P, Parkkinen JJ, Johansson R, Bohm J, Hollmen S, Kosma VM (2001) Prognostic value of hyaluronan expression in non-small-cell lung cancer: Increased stromal expression indicates unfavorable outcome in patients with adenocarcinoma. Int J Cancer 95:12–17

    CAS  PubMed  Google Scholar 

  • Pulkkinen JO, Penttinen M, Jalkanen M, Klemi P, Grenman R (1997) Syndecan-1 – a new prognostic marker In laryngeal cancer. Acta Otolaryngol 117:312–315

    CAS  PubMed  Google Scholar 

  • Ridley RC, Xiao HQ, Hata H, Woodliff J, Epstein J, Sanderson RD (1993) Expression of syndecan regulates human myeloma plasma cell adhesion to type I collagen. Blood 81:767–774

    CAS  PubMed  Google Scholar 

  • Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28:385–397

    CAS  PubMed  Google Scholar 

  • Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol 12:89–98

    CAS  PubMed  Google Scholar 

  • Sanderson RD, Borset M (2002) Syndecan-1 in B lymphoid malignancies. Ann Hematol 81:125–135

    CAS  PubMed  Google Scholar 

  • Sanderson RD, Yang Y, Kelly T, MacLeod V, Dai Y, Theus A (2005) Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J Cell Biochem 96:897–905

    CAS  PubMed  Google Scholar 

  • Sanderson RD, Yang Y, Suva LJ, Kelly T (2004) Heparan sulfate proteoglycans and heparanase – partners in osteolytic tumor growth and metastasis. Matrix Biol 23:341–352

    CAS  PubMed  Google Scholar 

  • Santra M, Eichstetter I, Iozzo RV (2000) An anti-oncogenic role for decorin. Down-regulation of ErbB2 leads to growth suppression and cytodifferentiation of mammary carcinoma cells. J Biol Chem 275:35153–35161

    CAS  PubMed  Google Scholar 

  • Sattar A, Rooney P, Kumar S, Pye D, West DC, Scott I, Ledger P (1994) Application of angiogenic oligosaccharides of hyaluronan increases blood vessel numbers in rat skin. J Invest Dermatol 103:576–579

    CAS  PubMed  Google Scholar 

  • Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 283:21305–21309

    CAS  PubMed  Google Scholar 

  • Scherpereel A, Gentina T, Grigoriu B, Senechal S, Janin A, Tsicopoulos A, Plenat F, Bechard D, Tonnel AB, Lassalle P (2003) Overexpression of endocan induces tumor formation. Cancer Res 63:6084–6089

    CAS  PubMed  Google Scholar 

  • Sebestyen A, Berczi L, Mihalik R, Paku S, Matolcsy A, Kopper L (1999) Syndecan-1 (CD138) expression in human non-Hodgkin lymphomas. Br J Haematol 104:412–419

    CAS  PubMed  Google Scholar 

  • Sebestyen A, Kovalszky I, Mihalik R, Gallai M, Bocsi J, Laszlo E, Benedek S, Sreter L, Kopper L (1997) Expression of syndecan-1 in human B cell chronic lymphocytic leukaemia. Eur J Cancer 33:2273–2277

    CAS  PubMed  Google Scholar 

  • Seftalioglu A, Karakus S, Dundar S, Can B, Erdemli E, Irmak MK, Oztas E, Korkmaz C, Yazar F, Cavusoglu I (2003) Syndecan-1 (CD138) expression in acute myeloblastic leukemia cells – an immuno electron microscopic study. Acta Oncol 42:71–74

    CAS  PubMed  Google Scholar 

  • Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IM, Abildgaard N, Waage A, Borset M (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95:388–392

    CAS  PubMed  Google Scholar 

  • Seya T, Tanaka N, Shinji S, Yokoi K, Koizumi M, Teranishi N, Yamashita K, Tajiri T, Ishiwata T, Naito Z (2006) Lumican expression in advanced colorectal cancer with nodal metastasis correlates with poor prognosis. Oncol Rep 16:1225–1230

    CAS  PubMed  Google Scholar 

  • Sharma B, Handler M, Eichstetter I, Whitelock JM, Nugent MA, Iozzo RV (1998) Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Invest 102:1599–1608

    CAS  PubMed  Google Scholar 

  • Sheng W, Wang G, Wang Y, Liang J, Wen J, Zheng PS, Wu Y, Lee V, Slingerland J, Dumont D, Yang BB (2005) The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol Biol Cell 16:1330–1340

    CAS  PubMed  Google Scholar 

  • Sifaki M, Assouti M, Nikitovic D, Krasagakis K, Karamanos NK, Tzanakakis GN (2006) Lumican, a small leucine-rich proteoglycan substituted with keratan sulfate chains is expressed and secreted by human melanoma cells and not normal melanocytes. IUBMB Life 58:606–610

    CAS  PubMed  Google Scholar 

  • Skandalis SS, Kletsas D, Kyriakopoulou D, Stavropoulos M, Theocharis DA (2006) The greatly increased amounts of accumulated versican and decorin with specific post-translational modifications may be closely associated with the malignant phenotype of pancreatic cancer. Biochim Biophys Acta 1760:1217–1225

    CAS  PubMed  Google Scholar 

  • Slevin M, Krupinski J, Gaffney J, Matou S, West D, Delisser H, Savani RC, Kumar S (2007) Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol 26:58–68

    CAS  PubMed  Google Scholar 

  • Slevin M, Krupinski J, Kumar S, Gaffney J (1998) Angiogenic oligosaccharides of hyaluronan induce protein tyrosine kinase activity in endothelial cells and activate a cytoplasmic signal transduction pathway resulting in proliferation. Lab Invest 78:987–1003

    CAS  PubMed  Google Scholar 

  • Stadlmann S, Gueth U, Baumhoer D, Moch H, Terracciano L, Singer G (2007) Glypican-3 expression in primary and recurrent ovarian carcinomas. Int J Gynecol Pathol 26:341–344

    PubMed  Google Scholar 

  • Stanley MJ, Stanley MW, Sanderson RD, Zera R (1999) Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am J Clin Pathol 112:377–383

    CAS  PubMed  Google Scholar 

  • Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715

    CAS  PubMed  Google Scholar 

  • Su G, Blaine SA, Qiao D, Friedl A (2007) Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem 282:14906–14915

    CAS  PubMed  Google Scholar 

  • Su G, Meyer K, Nandini CD, Qiao D, Salamat S, Friedl A (2006) Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. Am J Pathol 168:2014–2026

    CAS  PubMed  Google Scholar 

  • Sun D, McAlmon KR, Davies JA, Bernfield M, Hay ED (1998) Simultaneous loss of expression of syndecan-1 and E-cadherin in the embryonic palate during epithelial-mesenchymal transformation. Int J Dev Biol 42:733–736

    CAS  PubMed  Google Scholar 

  • Suwiwat S, Ricciardelli C, Tammi R, Tammi M, Auvinen P, Kosma VM, LeBaron RG, Raymond WA, Tilley WD, Horsfall DJ (2004) Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin Cancer Res 10:2491–2498

    CAS  PubMed  Google Scholar 

  • Takahashi K, Stamenkovic I, Cutler M, Dasgupta A, Tanabe KK (1996) Keratan sulfate modification of CD44 modulates adhesion to hyaluronate. J Biol Chem 271:9490–9496

    CAS  PubMed  Google Scholar 

  • Tammi RH, Kultti A, Kosma VM, Pirinen R, Auvinen P, Tammi MI (2008) Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan. Semin Cancer Biol 18:288–295

    CAS  PubMed  Google Scholar 

  • ten Dam GB, van de Westerlo EM, Purushothaman A, Stan RV, Bulten J, Sweep FC, Massuger LF, Sugahara K, van Kuppevelt TH (2007) Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in vascular endothelial growth factor binding. Am J Pathol 171:1324–1333

    PubMed  Google Scholar 

  • Theocharis AD (2002) Human colon adenocarcinoma is associated with specific post-translational modifications of versican and decorin. Biochim Biophys Acta 1588:165–172

    CAS  PubMed  Google Scholar 

  • Theocharis AD, Tsolakis I, Tzanakakis GN, Karamanos NK (2006) Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. Adv Pharmacol 53:281–295

    CAS  PubMed  Google Scholar 

  • Thomas L, Byers HR, Vink J, Stamenkovic I (1992) CD44H regulates tumor cell migration on hyaluronate-coated substrate. J Cell Biol 118:971–977

    CAS  PubMed  Google Scholar 

  • Tkachenko E, Rhodes JM, Simons M (2005) Syndecans: new kids on the signaling block. Circ Res 96:488–500

    CAS  PubMed  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    CAS  PubMed  Google Scholar 

  • Toole BP, Ghatak S, Misra S (2008) Hyaluronan oligosaccharides as a potential anticancer therapeutic. Curr Pharm Biotechnol 9:249–252

    CAS  PubMed  Google Scholar 

  • Toole BP, Slomiany MG (2008) Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin Cancer Biol 18:244–250

    CAS  PubMed  Google Scholar 

  • Toole BP, Zoltan-Jones A, Misra S, Ghatak S (2005) Hyaluronan: a critical component of epithelial-mesenchymal and epithelial-carcinoma transitions. Cells Tissues Organs 179:66–72

    CAS  PubMed  Google Scholar 

  • Tsanou E, Ioachim E, Briasoulis E, Charchanti A, Damala K, Karavasilis V, Pavlidis N, Agnantis NJ (2004) Clinicopathological study of the expression of syndecan-1 in invasive breast carcinomas. Correlation with extracellular matrix components. J Exp Clin Cancer Res 23:641–650

    CAS  PubMed  Google Scholar 

  • Tsara ME, Theocharis AD, Theocharis DA (2002) Compositional and structural alterations of proteoglycans in human rectum carcinoma with special reference to versican and decorin. Anticancer Res 22:2893–2898

    CAS  PubMed  Google Scholar 

  • Vuillermoz B, Khoruzhenko A, D’Onofrio MF, Ramont L, Venteo L, Perreau C, Antonicelli F, Maquart FX, Wegrowski Y (2004) The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res 296:294–306

    CAS  PubMed  Google Scholar 

  • Weber CK, Sommer G, Michl P, Fensterer H, Weimer M, Gansauge F, Leder G, Adler G, Gress TM (2001) Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology 121:657–667

    CAS  PubMed  Google Scholar 

  • Wegrowski Y, Maquart FX (2004) Involvement of stromal proteoglycans in tumour progression. Crit Rev Oncol Hematol 49:259–268

    PubMed  Google Scholar 

  • Wegrowski Y, Maquart FX (2006) Chondroitin sulfate proteoglycans in tumor progression. Adv Pharmacol 53:297–321

    CAS  PubMed  Google Scholar 

  • Weigel PH, Hascall VC, Tammi M (1997) Hyaluronan synthases. J Biol Chem 272:13997–14000

    CAS  PubMed  Google Scholar 

  • Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF Jr, Hampton GM (2001) Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61:5974–5978

    CAS  PubMed  Google Scholar 

  • West DC, Hampson IN, Arnold F, Kumar S (1985) Angiogenesis induced by degradation products of hyaluronic acid. Science 228:1324–1326

    CAS  PubMed  Google Scholar 

  • Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271:10079–10086

    CAS  PubMed  Google Scholar 

  • Wichert A, Stege A, Midorikawa Y, Holm PS, Lage H (2004) Glypican-3 is involved in cellular protection against mitoxantrone in gastric carcinoma cells. Oncogene 23:945–955

    CAS  PubMed  Google Scholar 

  • Woods A, Couchman JR (1988) Focal adhesions and cell-matrix interactions. Coll Relat Res 8:155–182

    CAS  PubMed  Google Scholar 

  • Woszczyk D, Gola J, Jurzak M, Mazurek U, Mykala-Ciesla J, Wilczok T (2004) Expression of TGF beta1 genes and their receptor types I, II, and III in low- and high-grade malignancy non-Hodgkin’s lymphomas. Med Sci Monit 10:CR33–CR37

    CAS  PubMed  Google Scholar 

  • Xiang YY, Ladeda V, Filmus J (2001) Glypican-3 expression is silenced in human breast cancer. Oncogene 20:7408–7412

    CAS  PubMed  Google Scholar 

  • Yamauchi N, Watanabe A, Hishinuma M, Ohashi K, Midorikawa Y, Morishita Y, Niki T, Shibahara J, Mori M, Makuuchi M, Hippo Y, Kodama T, Iwanari H, Aburatani H, Fukayama M (2005) The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod Pathol 18:1591–1598

    CAS  PubMed  Google Scholar 

  • Yang J, Price MA, Neudauer CL, Wilson C, Ferrone S, Xia H, Iida J, Simpson MA, McCarthy JB (2004) Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J Cell Biol 165:881–891

    CAS  PubMed  Google Scholar 

  • Yang JM, Xu Z, Wu H, Zhu H, Wu X, Hait WN (2003) Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol Cancer Res 1:420–427

    CAS  PubMed  Google Scholar 

  • Yang Y, MacLeod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, Sasisekharan R, Naggi A, Torri G, Casu B, Vlodavsky I, Suva LJ, Epstein J, Yaccoby S, Shaughnessy JD Jr, Barlogie B, Sanderson RD (2007) The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110:2041–2048

    CAS  PubMed  Google Scholar 

  • Yang Y, Yaccoby S, Liu W, Langford JK, Pumphrey CY, Theus A, Epstein J, Sanderson RD (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100:610–617

    CAS  PubMed  Google Scholar 

  • Ying S, Shiraishi A, Kao CW, Converse RL, Funderburgh JL, Swiergiel J, Roth MR, Conrad GW, Kao WW (1997) Characterization and expression of the mouse lumican gene. J Biol Chem 272:30306–30313

    CAS  PubMed  Google Scholar 

  • Yoshioka N, Inoue H, Nakanishi K, Oka K, Yutsudo M, Yamashita A, Hakura A, Nojima H (2000) Isolation of transformation suppressor genes by cDNA subtraction: lumican suppresses transformation induced by v-src and v-K-ras. J Virol 74:1008–1013

    CAS  PubMed  Google Scholar 

  • Zafiropoulos A, Tzanakakis GN (2008) Decorin-mediated effects in cancer cell biology. Connect Tissue Res 49:244–248

    CAS  PubMed  Google Scholar 

  • Zhu ZW, Friess H, Wang L, Abou-Shady M, Zimmermann A, Lander AD, Korc M, Kleeff J, Buchler MW (2001) Enhanced glypican-3 expression differentiates the majority of hepatocellular carcinomas from benign hepatic disorders. Gut 48:558–564

    CAS  PubMed  Google Scholar 

  • Zoltan-Jones A, Huang L, Ghatak S, Toole BP (2003) Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem 278:45801–45810

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support to the authors includes grants from the National Institutes of Health CA135075 and CA055819 (to RDS), Institutional Training Fellowship T32 AR047512 (to JR), the Veterans Administration (to RDS), and the Multiple Myeloma Research Foundation (to YY). We apologize to authors whose work was not cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph D. Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sanderson, R.D., Yang, Y., Purushothaman, A., Khotskaya, Y.B., Ritchie, J.P., Ramani, V.C. (2010). Proteoglycans and Cancer. In: Zent, R., Pozzi, A. (eds) Cell-Extracellular Matrix Interactions in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0814-8_9

Download citation

Publish with us

Policies and ethics