Skip to main content

Cancer in Context: Importance of the Tumor Microenvironment

  • Chapter
  • First Online:
  • 1296 Accesses

Abstract

Our understanding of tumor biology has evolved from the consideration of only tumor cell autonomous changes to the realization of the plethora of interactions among various cells and molecules present within the locale of a growing tumor. Characterizing this so-called “tumor microenvironment” has opened a new window of opportunity for both diagnostic and therapeutic approaches. From a therapeutic perspective, an attractive feature of targeting noncancer cells is that they are not inherently genetically unstable and therefore drug resistance is less likely than in mutation-prone tumor cells. In this chapter, we consider the roles of different cell types, molecules, and environmental conditions that together constitute the unique topography of a tumor microenvironment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almholt K et al (2005) Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int J Cancer 113:525–532

    CAS  PubMed  Google Scholar 

  • Andersen TL et al (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17

    CAS  PubMed  Google Scholar 

  • Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Molec Life Sci 57:25–40

    CAS  PubMed  Google Scholar 

  • Ao M et al (2007) Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Res 67:4244–4253

    CAS  PubMed  Google Scholar 

  • Armstrong T et al (2004) Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 10:7427–7437

    CAS  PubMed  Google Scholar 

  • Balk SP, Ko YJ, Bubley GJ (2003) Biology of prostate-specific antigen. J Clin Oncol 21:383–391

    CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    CAS  PubMed  Google Scholar 

  • Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    CAS  PubMed  Google Scholar 

  • Bergers G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    CAS  PubMed  Google Scholar 

  • Bergers G et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    CAS  PubMed  Google Scholar 

  • Bernfield M et al (1999) Functions of cell surface heparan sulfate proteoglycans. Ann Rev Biochem 68:729–777

    CAS  PubMed  Google Scholar 

  • Beyer M, Schultze JL (2008) Immunoregulatory T cells: role and potential as a target in malignancy. Curr Oncol Rep 10:130–136

    CAS  PubMed  Google Scholar 

  • Bhowmick NA et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    CAS  PubMed  Google Scholar 

  • Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    CAS  PubMed  Google Scholar 

  • Bugge TH et al (1998) Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice. Oncogene 16:3097–3104

    CAS  PubMed  Google Scholar 

  • Burnet M (1964) Immunological factors in the process of carcinogenesis. Br Med Bull 20:154–158

    CAS  PubMed  Google Scholar 

  • Chakraborty AK et al (2001) Fusion hybrids with macrophage and melanoma cells up-regulate N-acetylglucosaminyltransferase V, beta1–6 branching, and metastasis. Cell Growth Diff 12:623–630

    CAS  PubMed  Google Scholar 

  • Chang HY et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102:3738–3743

    CAS  PubMed  Google Scholar 

  • Cheng N et al (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24:5053–5068

    CAS  PubMed  Google Scholar 

  • Cools N et al (2007) Regulatory T cells and human disease. Clin Dev Immunol 2007:89195

    PubMed  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    CAS  PubMed  Google Scholar 

  • Coussens LM et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13:1382–1397

    CAS  PubMed  Google Scholar 

  • Cunha GR et al (2004) Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J Steroid Biochem Molec Biol 92:221–236

    CAS  PubMed  Google Scholar 

  • De Milito A, Fais S (2005) Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol 1:779–786

    PubMed  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    PubMed  Google Scholar 

  • Dunn GP et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    CAS  PubMed  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl J Med 315:1650–1659

    CAS  Google Scholar 

  • Eble JA, Haier J (2006) Integrins in cancer treatment. Curr Cancer Drug Targets 6:89–105

    CAS  PubMed  Google Scholar 

  • Edovitsky E et al (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1219–1230

    CAS  PubMed  Google Scholar 

  • Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    CAS  PubMed  Google Scholar 

  • Fidler IJ et al (1994) Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastas Rev 13:209–222

    CAS  Google Scholar 

  • Finak G et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    CAS  PubMed  Google Scholar 

  • Fingleton, B. 2007. Matrix metalloproteinases as valid clinical targets. Curr Pharm Des13:333-46.

    Google Scholar 

  • Finke LH et al (2007) Lessons from randomized phase III studies with active cancer immunotherapies–outcomes from the 2006 meeting of the Cancer Vaccine Consortium (CVC). Vaccine 25(Suppl 2):B97–B109

    CAS  PubMed  Google Scholar 

  • Fischer C et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131:463–475

    CAS  PubMed  Google Scholar 

  • Fisher B et al (1983) Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer 52:1551–1557

    CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. New Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  • Foo SS et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173

    CAS  PubMed  Google Scholar 

  • Gale NW et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101:15949–15954

    CAS  PubMed  Google Scholar 

  • Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8:56–61

    CAS  PubMed  Google Scholar 

  • Gerhardt H, Semb H (2008) Pericytes: gatekeepers in tumour cell metastasis? J Molec Med 86:135–144

    PubMed  Google Scholar 

  • Gerweck LE, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 5:1275–1279

    CAS  PubMed  Google Scholar 

  • Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64

    CAS  PubMed  Google Scholar 

  • Gocheva V et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. GenesDev 20:543–556

    CAS  Google Scholar 

  • Gohji K et al (1997) Organ-site dependence for the production of urokinase-type plasminogen activator and metastasis by human renal cell carcinoma cells. Am J Pathol 151:1655–1661

    CAS  PubMed  Google Scholar 

  • Guise TA et al (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12:6213s–6216s

    CAS  PubMed  Google Scholar 

  • Gutman M et al (1995) Regulation of interleukin-8 expression in human melanoma cells by the organ environment. Cancer Res 55:2470–2475

    CAS  PubMed  Google Scholar 

  • Hall B, Andreeff M, Marini F (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283

    CAS  PubMed  Google Scholar 

  • Hammes HP et al (2004) Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53:1104–1110

    CAS  PubMed  Google Scholar 

  • Haniffa MA et al (2007) Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 179:1595–1604

    CAS  PubMed  Google Scholar 

  • Heissig B et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    CAS  PubMed  Google Scholar 

  • Hendrix MJ et al (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421

    CAS  PubMed  Google Scholar 

  • Henry LR et al (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13:1736–1741

    CAS  PubMed  Google Scholar 

  • Hotary KB et al (2003) Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114:33–45

    CAS  PubMed  Google Scholar 

  • Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039

    CAS  PubMed  Google Scholar 

  • Johansson M, Denardo DG, Coussens LM (2008) Polarized immune responses differentially regulate cancer development. Immunol Rev 222:145–154

    CAS  PubMed  Google Scholar 

  • Josephy PD, Coomber BL (1998) The 1996 Veylien Henderson Award of the Society of Toxicology of Canada. Current concepts: neutrophils and the activation of carcinogens in the breast and other organs. Can J Physiol Pharmacol 76:693–700

    CAS  PubMed  Google Scholar 

  • Joukov V et al (1997) Vascular endothelial growth factors VEGF-B and VEGF-C. J Cell Physiol 173:211–215

    CAS  PubMed  Google Scholar 

  • Joyce JA et al (2004) Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5:443–453

    CAS  PubMed  Google Scholar 

  • Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    CAS  PubMed  Google Scholar 

  • Kerbel RS (2008) Tumor angiogenesis. New Engl J Med 358:2039–2049

    CAS  PubMed  Google Scholar 

  • Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930

    CAS  PubMed  Google Scholar 

  • Koenig A et al (2006) Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res 66:4662–4671

    CAS  PubMed  Google Scholar 

  • Lin EY, Pollard JW (2007) Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67:5064–5066

    CAS  PubMed  Google Scholar 

  • Loeffler M et al (2006) Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 116:1955–1962

    CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808

    CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519

    CAS  PubMed  Google Scholar 

  • Lotfi R, Lee JJ, Lotze MT (2007) Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother 30:16–28

    CAS  PubMed  Google Scholar 

  • Lynch CC, Matrisian LM (2002) Matrix metalloproteinases in tumor-host cell communication. Differentiation 70:561–573

    CAS  PubMed  Google Scholar 

  • Macri L, Silverstein D, Clark RA (2007) Growth factor binding to the pericellular matrix and its importance in tissue engineering. Adv Drug Deliv Rev 59:1366–1381

    CAS  PubMed  Google Scholar 

  • Mandriota SJ et al (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682

    CAS  PubMed  Google Scholar 

  • Mitsi M et al (2006) Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochem 45:10319–10328

    CAS  Google Scholar 

  • Morris LF, Ribas A, Morris LF, Ribas A (2007) Therapeutic cancer vaccines. Surg Oncol Clin N Am 16:819–831 ix

    PubMed  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    CAS  PubMed  Google Scholar 

  • Nakajima M et al (1990) Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. J Natl Cancer Inst 82:1890–1898

    CAS  PubMed  Google Scholar 

  • Noguera-Troise I et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444:1032–1037

    CAS  PubMed  Google Scholar 

  • Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979

    CAS  PubMed  Google Scholar 

  • Ohm JE, Carbone DP (2001) VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 23:263–272

    CAS  PubMed  Google Scholar 

  • Olumi AF et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    CAS  PubMed  Google Scholar 

  • Ortiz-Urda S et al (2005) Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307:1773–1776

    CAS  PubMed  Google Scholar 

  • Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8:377–386

    CAS  PubMed  Google Scholar 

  • Reddig PJ, Juliano RL (2005) Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastas Rev 24:425–439

    Google Scholar 

  • Ridgway J et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087

    CAS  PubMed  Google Scholar 

  • Rifkin DB (2005) Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 280:7409–7412

    CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  • Rofstad EK et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707

    CAS  PubMed  Google Scholar 

  • Ruegg C, Mutter N (2007) Anti-angiogenic therapies in cancer: achievements and open questions. Bull Cancer 94:753–762

    CAS  PubMed  Google Scholar 

  • Schenk S et al (2003) Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J Cell Biol 161:197–209

    CAS  PubMed  Google Scholar 

  • Semenza GL (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Molec Biol 35:71–103

    CAS  Google Scholar 

  • Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13:167–171

    CAS  PubMed  Google Scholar 

  • Semenza GL (2007) Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 12:853–859

    CAS  PubMed  Google Scholar 

  • Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560

    CAS  PubMed  Google Scholar 

  • Shintani Y et al (2006) Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 66:11745–11753

    CAS  PubMed  Google Scholar 

  • Sinnamon MJ et al (2008) A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 29:880–886

    CAS  PubMed  Google Scholar 

  • Soucek L et al (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    CAS  PubMed  Google Scholar 

  • Stacker SA et al (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583

    CAS  PubMed  Google Scholar 

  • Stagg J (2008) Mesenchymal Stem Cells in Cancer. Stem Cell Rev 4(2):119–124

    PubMed  Google Scholar 

  • Staroselsky AN et al (1990) Site-dependent differences in response of the UV-2237 murine fibrosarcoma to systemic therapy with adriamycin. Cancer Res 50:7775–7780

    CAS  PubMed  Google Scholar 

  • Svastova E et al (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577:439–445

    CAS  PubMed  Google Scholar 

  • Thews O et al (2006) Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 8:143–152

    CAS  PubMed  Google Scholar 

  • Tredan O et al (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    CAS  PubMed  Google Scholar 

  • Uemura A et al (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110:1619–1628

    CAS  PubMed  Google Scholar 

  • Vasiljeva O et al (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66:5242–5250

    CAS  PubMed  Google Scholar 

  • von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629

    Google Scholar 

  • Welch DR et al (1989) Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci USA 86:5859–5863

    CAS  PubMed  Google Scholar 

  • Yamagata M et al (1998) The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 77:1726–1731

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y (2007) Microenvironmental regulation of estrogen signals in breast cancer. Breast Cancer 14:175–181

    PubMed  Google Scholar 

Download references

Acknowledgments

We regret that limited space precludes citing much relevant literature. The authors are supported by Susan G. Komen for the Cure, grant # BCTR0600431 (to B.F.) and by the Department of Defense Prostate Cancer Research Program New Investigator Program, award # W81XWH-07-1-0208 (to C.C.L.). Views and opinions of the authors do not reflect those of the US Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Fingleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fingleton, B., Lynch, C. (2010). Cancer in Context: Importance of the Tumor Microenvironment. In: Zent, R., Pozzi, A. (eds) Cell-Extracellular Matrix Interactions in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0814-8_3

Download citation

Publish with us

Policies and ethics