Skip to main content

The Extracellular Matrix: An Overview

  • Chapter
  • First Online:

Abstract

The extracellular matrix encompasses the very large number of constituent macromolecules that are synthesized and secreted by cells into the space surrounding them, followed in most cases by further assembly, cross-linking, and/or polymerization of the secreted proteins to form an organized structure. The extracellular matrix has a number of critical roles in tissue and organ development, function, and repair after injury. In addition, there are numerous serious and debilitating genetic diseases whose bases lie in mutations in genes encoding extracellular matrix proteins. There are also acquired diseases, such as scurvy, chronic obstructive pulmonary disease, and cancer, that can be caused by damage to or are influenced by changes in the organization or integrity of the extracellular matrix. The goal of this chapter is to provide an overview of the extracellular matrix by discussing the different classes of extracellular matrix molecules and presenting a subset of individual extracellular matrix proteins from each class in greater detail in order to demonstrate their importance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y (2001) Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 27:431–434

    Article  CAS  PubMed  Google Scholar 

  • Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332

    Article  CAS  PubMed  Google Scholar 

  • Bader BL, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, Murshed M, Nischt R (2005) Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol 25:6846–6856

    Article  CAS  PubMed  Google Scholar 

  • Bolcato-Bellemin AL, Lefebvre O, Arnold C, Sorokin L, Miner JH, Kedinger M, Simon-Assmann P (2003) Laminin alpha5 chain is required for intestinal smooth muscle development. Dev Biol 260:376–390

    Article  CAS  PubMed  Google Scholar 

  • Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinman H, Martin GR, Ortonne J-P, Paulsson M, Sanes J, Timpl R, Tryggvason K, Yamada Y, Yurchenco PD (1994) A new nomenclature for laminins. Matrix Biol 14:209–211

    Article  CAS  PubMed  Google Scholar 

  • Burgess RW, Nguyen QT, Son YJ, Lichtman JW, Sanes JR (1999) Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23:33–44

    Article  CAS  PubMed  Google Scholar 

  • Byers PH (2000) Collagens: building blocks at the end of the development line. Clin Genet 58:270–279

    Article  CAS  PubMed  Google Scholar 

  • Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353

    Article  CAS  PubMed  Google Scholar 

  • Cho J, Mosher DF (2006) Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost 4:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Chu ML, Tsuda T (2004) Fibulins in development and heritable disease. Birth Defects Res C Embryo Today 72:25–36

    Article  CAS  PubMed  Google Scholar 

  • Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139

    Article  CAS  PubMed  Google Scholar 

  • Corson GM, Charbonneau NL, Keene DR, Sakai LY (2004) Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics 83:461–472

    Article  CAS  PubMed  Google Scholar 

  • Costell M, Gustafsson E, Aszodi A, Morgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fassler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • de Vega S, Iwamoto T, Nakamura T, Hozumi K, McKnight DA, Fisher LW, Fukumoto S, Yamada Y (2007) TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem 282:30878–30888

    Article  PubMed  Google Scholar 

  • Fukumoto S, Miner JH, Ida H, Fukumoto E, Yuasa K, Miyazaki H, Hoffman MP, Yamada Y (2006) Laminin alpha5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. J Biol Chem 281:5008–5016

    Article  CAS  PubMed  Google Scholar 

  • Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525–35

    Article  CAS  PubMed  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    CAS  PubMed  Google Scholar 

  • Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SW (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354:1489–1496

    Article  CAS  PubMed  Google Scholar 

  • Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277:2002–2004

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Reymond JL, Pinel N, Zabot MT, Urban Z (2006) Inflammatory destruction of elastic fibers in acquired cutis laxa is associated with missense alleles in the elastin and fibulin-5 genes. J Invest Dermatol 126:283–290

    Article  CAS  PubMed  Google Scholar 

  • Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG (2003) Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 348:2543–2556

    Article  CAS  PubMed  Google Scholar 

  • Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM (2000) Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287:989–994

    Article  CAS  PubMed  Google Scholar 

  • Hynes R (1999) Fibronectins. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins. Oxford University Press, New York, pp 422–425

    Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  • Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501

    Article  CAS  PubMed  Google Scholar 

  • Kammerer RA, Schulthess T, Landwehr R, Schumacher B, Lustig A, Yurchenco PD, Ruegg MA, Engel J, Denzer AJ (1999) Interaction of agrin with laminin requires a coiled-coil conformation of the agrin-binding site within the laminin gamma1 chain. EMBO J 18:6762–6770

    Article  CAS  PubMed  Google Scholar 

  • Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS (1996) Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science 271:360–362

    Article  CAS  PubMed  Google Scholar 

  • Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG (2006) Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 281:38117–38121

    Article  CAS  PubMed  Google Scholar 

  • Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Kostka G, Garbe JH, Keene DR, Bachinger HP, Hanisch FG, Markova D, Tsuda T, Timpl R, Chu ML, Sasaki T (2007) A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization. J Biol Chem 282:11805–11816

    Article  CAS  PubMed  Google Scholar 

  • Lamande SR, Bateman JF (1999) Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin Cell Dev Biol 10:455–464

    Article  CAS  PubMed  Google Scholar 

  • Le Goff C, Somerville RP, Kesteloot F, Powell K, Birk DE, Colige AC, Apte SS (2006) Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis. Development 133:1587–1596

    Article  PubMed  Google Scholar 

  • Li DY, Faury G, Taylor DG, Davis EC, Boyle WA, Mecham RP, Stenzel P, Boak B, Keating MT (1998) Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest 102:1783–1787

    Article  CAS  PubMed  Google Scholar 

  • Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM, Fessler LI, Birk DE (1993) Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol 121:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Mahoney ZX, Stappenbeck TS, Miner JH (2008) Laminin {alpha}5 influences the architecture of the mouse small intestine mucosa. J Cell Sci 121:2493–2502

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    Article  CAS  PubMed  Google Scholar 

  • Marneros AG, Olsen BR (2005) Physiological role of collagen XVIII and endostatin. FASEB J 19:716–728

    Article  CAS  PubMed  Google Scholar 

  • McMillan JR, Akiyama M, Shimizu H (2003) Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J Dermatol Sci 31:169–177

    Article  CAS  PubMed  Google Scholar 

  • Mecham R (1999) Elastin. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins. Oxford University Press, New York, pp 414–417

    Google Scholar 

  • Metcalfe K, Rucka AK, Smoot L, Hofstadler G, Tuzler G, McKeown P, Siu V, Rauch A, Dean J, Dennis N, Ellis I, Reardon W, Cytrynbaum C, Osborne L, Yates JR, Read AP, Donnai D, Tassabehji M (2000) Elastin: mutational spectrum in supravalvular aortic stenosis. Eur J Hum Genet 8:955–963

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Sanes JR (1996) Molecular and functional defects in kidneys of mice lacking collagen α3(IV): implications for Alport syndrome. J Cell Biol 135:1403–1413

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    Article  CAS  PubMed  Google Scholar 

  • Mullins RF, Olvera MA, Clark AF, Stone EM (2007) Fibulin-5 distribution in human eyes: relevance to age-related macular degeneration. Exp Eye Res 84:378–380

    Article  CAS  PubMed  Google Scholar 

  • Murshed M, Smyth N, Miosge N, Karolat J, Krieg T, Paulsson M, Nischt R (2000) The absence of nidogen 1 does not affect murine basement membrane formation. Mol Cell Biol 20:7007–7012

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Kagawa M, Iyama K, Naito I, Kishiro Y, Seyer JM, Sugimoto M, Oohashi T, Sado Y (1995) Differential expression of two basement membrane collagen genes, COL4A6 and COL4A5, demonstrated by immunofluorescence staining using peptide-specific monoclonal antibodies. J Cell Biol 130:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Olsen BR, Ninomiya Y (1999a) Collagens: overview of the family. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins. Oxford University Press, New York, pp 380–383

    Google Scholar 

  • Olsen BR, Ninomiya Y (1999b) Fibrillar collagens. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins. Oxford University Press, New York, pp 383–387

    Google Scholar 

  • Ortiz-Urda S, Garcia J, Green CL, Chen L, Lin Q, Veitch DP, Sakai LY, Lee H, Marinkovich MP, Khavari PA (2005) Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307:1773–1776

    Article  CAS  PubMed  Google Scholar 

  • Park ES, Putnam EA, Chitayat D, Child A, Milewicz DM (1998) Clustering of FBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development. Am J Med Genet 78:350–355

    Article  CAS  PubMed  Google Scholar 

  • Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54:1135S–1140S

    CAS  PubMed  Google Scholar 

  • Plaisier E, Gribouval O, Alamowitch S, Mougenot B, Prost C, Verpont MC, Marro B, Desmettre T, Cohen SY, Roullet E, Dracon M, Fardeau M, Van Agtmael T, Kerjaschki D, Antignac C, Ronco P (2007) COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med 357:2687–2695

    Article  CAS  PubMed  Google Scholar 

  • Rahn DD, Acevedo JF, Roshanravan S, Keller PW, Davis EC, Marmorstein LY, Word RA (2009) Failure of pelvic organ support in mice deficient in fibulin-3. Am J Pathol 174:206–215

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Dietz HC (2007) Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr Opin Genet Dev 17:252–258

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Sakai LY, Rifkin DB, Dietz HC (2007) Extracellular microfibrils in development and disease. Cell Mol Life Sci 64:2437–2446

    Article  CAS  PubMed  Google Scholar 

  • Rattenholl A, Pappano WN, Koch M, Keene DR, Kadler KE, Sasaki T, Timpl R, Burgeson RE, Greenspan DS, Bruckner-Tuderman L (2002) Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. J Biol Chem 277:26372–26378

    Article  CAS  PubMed  Google Scholar 

  • Ricard-Blum S, Ruggiero F (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris) 53:430–442

    CAS  Google Scholar 

  • Robins SP (2007) Biochemistry and functional significance of collagen cross-linking. Biochem Soc Trans 35:849–852

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Johnson KJ, Murozono M, Sakai K, Magnuson MA, Wieloch T, Cronberg T, Isshiki A, Erickson HP, Fassler R (2001) Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis. Nat Med 7:324–330

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Apel ED, Gautam M, Glass D, Grady RM, Martin PT, Nichol MC, Yancopoulos GD (1998) Agrin receptors at the skeletal neuromuscular junction. Ann N Y Acad Sci 841:1–13

    Article  CAS  PubMed  Google Scholar 

  • Shaw LM, Olsen BR (1991) FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem Sci 16:191–194

    Article  CAS  PubMed  Google Scholar 

  • Shifren A, Mecham RP (2006) The stumbling block in lung repair of emphysema: elastic fiber assembly. Proc Am Thorac Soc 3:428–433

    Article  CAS  PubMed  Google Scholar 

  • Smyth N, Vatansever HS, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144:151–160

    Article  CAS  PubMed  Google Scholar 

  • Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502

    Article  CAS  PubMed  Google Scholar 

  • Varga J, Pasche B (2008) Antitransforming growth factor-beta therapy in fibrosis: recent progress and implications for systemic sclerosis. Curr Opin Rheumatol 20:720–728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by R01DK078314 and R01GM060432 (both to JHM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey H. Miner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miner, J.H. (2010). The Extracellular Matrix: An Overview. In: Zent, R., Pozzi, A. (eds) Cell-Extracellular Matrix Interactions in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0814-8_1

Download citation

Publish with us

Policies and ethics