Skip to main content

The Challenges in Blood Proteomic Biomarker Discovery

  • Chapter
  • First Online:
Computational Biology

Abstract

Although discovering proteomic biomarker by using mass spectrometry technique is promising, its rate of introducing proteomic biomarker approved by the US Food and Drug Administration is falling every year and nearly 1 per year on an average since 1998. Apparently, there is a big gap between biomarker discovery and biomarker validation. Here, we reviewed the challenges appearing in the three key stages for the pipeline of proteomic biomarker, that is, blood sample preparation, bioinformatics algorithms for biomarker candidate discovery, and validation and clinical application of proteomic biomarkers. To analyze and explain the reasons for the gap between biomarker discovery and validation, we covered areas ranging from the techniques/methods used in biomarker discovery and their related biological backgrounds to the existing problems in these techniques/methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam BL, Qu Y et al (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62(13):3609–3614

    PubMed  CAS  Google Scholar 

  • Ahmed N, Barker G et al (2003) An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics 3(10):1980–1987

    Article  PubMed  CAS  Google Scholar 

  • Albrethsen J (2007) Reproducibility in protein profiling by MALDI-TOF mass spectrometry. Clin Chem 53(5):852–858

    Article  PubMed  CAS  Google Scholar 

  • Alfassi ZB (2004) On the normalization of a mass spectrum for comparison of two spectra. J Am Soc Mass Spectrom 15(3):385–387

    Article  PubMed  CAS  Google Scholar 

  • America AH, Cordewener JH (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8(4):731–749

    Article  PubMed  CAS  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  PubMed  CAS  Google Scholar 

  • Anderson NL, Polanski M et al (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3(4):311–326

    Article  PubMed  CAS  Google Scholar 

  • Andreev VP, Rejtar T et al (2003) A universal denoising and peak picking algorithm for LC-MS based on matched filtration in the chromatographic time domain. Anal Chem 75(22): 6314–6326

    Article  PubMed  CAS  Google Scholar 

  • Arneberg R, Rajalahti T et al (2007) Pretreatment of mass spectral profiles: application to proteomic data. Anal Chem 79(18):7014–7026

    Article  PubMed  CAS  Google Scholar 

  • Baggerly KA, Morris JS et al (2003) A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics spectra from serum samples. Proteomics 3(9):1667–1672

    Article  PubMed  CAS  Google Scholar 

  • Ball G, Mian S et al (2002) An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18(3):395–404

    Article  PubMed  CAS  Google Scholar 

  • Bensmail H, Golek J et al (2005) A novel approach for clustering proteomics data using Bayesian fast Fourier transform. Bioinformatics 21(10):2210–2224

    Article  PubMed  CAS  Google Scholar 

  • Bhanot G, Alexe G et al (2006) A robust meta-classification strategy for cancer detection from MS data. Proteomics 6(2):592–604

    Article  PubMed  CAS  Google Scholar 

  • Bodovitz S, Joos T (2004) The proteomics bottleneck: strategies for preliminary validation of potential biomarkers and drug targets. Trends Biotechnol 22(1):4–7

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  PubMed  CAS  Google Scholar 

  • Brouwers FM, Petricoin EF III et al (2005) Low molecular weight proteomic information distinguishes metastatic from benign pheochromocytoma. Endocr Relat Cancer 12(2):263–272

    Article  PubMed  CAS  Google Scholar 

  • Bylund D, Danielsson R et al (2002) Chromatographic alignment by warping and dynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography-mass spectrometry data. J Chromatogr A 961(2):237–244

    Article  PubMed  CAS  Google Scholar 

  • Callister SJ, Barry RC et al (2006) Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res 5(2):277–286

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Kao MY et al (2001) A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J Comput Biol 8(3):325–337

    Article  PubMed  CAS  Google Scholar 

  • Cho SY, Lee EY et al (2005) Efficient prefractionation of low-abundance proteins in human plasma and construction of a two-dimensional map. Proteomics 5(13):3386–3396

    Article  PubMed  CAS  Google Scholar 

  • Coombes KR (2005) Analysis of mass spectrometry profiles of the serum proteome. Clin Chem 51(1):1–2

    Article  PubMed  CAS  Google Scholar 

  • Coombes KR, Fritsche HA Jr et al (2003) Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization. Clin Chem 49(10):1615–1623

    Article  PubMed  CAS  Google Scholar 

  • Coombes KR, Tsavachidis S et al (2005) Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 5(16):4107–4117

    Article  PubMed  CAS  Google Scholar 

  • Cox J, Mann M (2007) Is proteomics the new genomics? Cell 130(3):395–398

    Article  PubMed  CAS  Google Scholar 

  • Dancik V, Addona TA et al (1999) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol 6(3–4):327–342

    Article  PubMed  CAS  Google Scholar 

  • Davis MT, Patterson SD (2007) Does the serum peptidome reveal hemostatic dysregulation? Ernst Schering Res Found Workshop 61:23–44

    Article  PubMed  CAS  Google Scholar 

  • Diamandis EP (2003) Point: proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 49(8):1272–1275

    Article  PubMed  CAS  Google Scholar 

  • Diamandis EP (2004) Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J Natl Cancer Inst 96(5):353–356

    Article  PubMed  Google Scholar 

  • Diamond DL, Y Zhang et al (2003) Use of ProteinChip array surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) to identify thymosin beta-4, a differentially secreted protein from lymphoblastoid cell lines. J Am Soc Mass Spectrom 14(7):760–765

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra M, Vonk RJ et al (2007) SELDI-TOF mass spectra: a view on sources of variation. J Chromatogr B Analyt Technol Biomed Life Sci 847(1):12–23

    Article  PubMed  CAS  Google Scholar 

  • Ebert MP, Meuer J et al (2004) Identification of gastric cancer patients by serum protein profiling. J Proteome Res 3(6):1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Fenselau C (2007) A review of quantitative methods for proteomic studies. J Chromatogr B Analyt Technol Biomed Life Sci 855(1):14–20

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-de-Cossio J, Gonzalez J et al (1995) A computer program to aid the sequencing of peptides in collision-activated decomposition experiments. Comput Appl Biosci 11(4): 427–434

    PubMed  CAS  Google Scholar 

  • Fischer B, Roth V et al (2005) NovoHMM: a hidden Markov model for de novo peptide sequencing. Anal Chem 77(22):7265–7273

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Grossmann J et al (2006) Semi-supervised LC/MS alignment for differential proteomics. Bioinformatics 22(14):e132–e140

    Article  PubMed  CAS  Google Scholar 

  • Frank A, Pevzner P (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77(4):964–973

    Article  PubMed  CAS  Google Scholar 

  • Fung ET, Enderwick C (2002) ProteinChip clinical proteomics: computational challenges and solutions. Biotechniques Suppl:34–38, 40–41

    Google Scholar 

  • Fushiki T, Fujisawa H et al (2006) Identification of biomarkers from mass spectrometry data using a common peak approach. BMC Bioinformatics 7:358

    Article  PubMed  CAS  Google Scholar 

  • Geho DH, Liotta LA et al (2006) The amplified peptidome: the new treasure chest of candidate biomarkers. Curr Opin Chem Biol 10(1):50–55

    Article  PubMed  CAS  Google Scholar 

  • Geurts P, Fillet M et al (2005) Proteomic mass spectra classification using decision tree based ensemble methods. Bioinformatics 21(14):3138–3145

    Article  PubMed  CAS  Google Scholar 

  • Gobom J, Mueller M et al (2002) A calibration method that simplifies and improves accurate determination of peptide molecular masses by MALDI-TOF MS. Anal Chem 74(15): 3915–3923

    Article  PubMed  CAS  Google Scholar 

  • Gras R, Muller M et al (1999) Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection. Electrophoresis 20(18):3535–3550

    Article  PubMed  CAS  Google Scholar 

  • Hanash SM, Pitteri SJ et al (2008) Mining the plasma proteome for cancer biomarkers. Nature 452(7187):571–579

    Article  PubMed  CAS  Google Scholar 

  • Hastings CA, Norton SM et al (2002) New algorithms for processing and peak detection in liquid chromatography/mass spectrometry data. Rapid Commun Mass Spectrom 16(5):462–467

    Article  PubMed  CAS  Google Scholar 

  • Hauskrecht M, Pelikan R et al (2005) Feature selection for classification of SELDI-TOF-MS proteomic profiles. Appl Bioinformatics 4(4):227–246

    Article  PubMed  CAS  Google Scholar 

  • Higdon R, Kolker N et al (2004) LIP index for peptide classification using MS/MS and SEQUEST search via logistic regression. OMICS 8(4):357–369

    Article  PubMed  CAS  Google Scholar 

  • Hilario M, Kalousis A et al (2006) Processing and classification of protein mass spectra. Mass Spectrom Rev 25(3):409–449

    Article  PubMed  CAS  Google Scholar 

  • Hingorani SR, Petricoin EF et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann P, Ji H et al (2001) Continuous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM 1215: a non two-dimensional gel electrophoresis-based proteome analysis strategy. Proteomics 1(7):807–818

    Article  PubMed  CAS  Google Scholar 

  • Hortin GL (2006) The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 52(7):1223–1237

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Jacob RJ et al (2001) Functional assignment of the 20 S proteasome from Trypanosoma brucei using mass spectrometry and new bioinformatics approaches. J Biol Chem 276(30):28327–28339

    Article  PubMed  CAS  Google Scholar 

  • Itoh SG, Okamoto Y (2007) Effective sampling in the configurational space of a small peptide by the multicanonical-multioverlap algorithm. Phys Rev E Stat Nonlin Soft Matter Phys 76(2, Part 2):026705

    Google Scholar 

  • Jaitly N, Monroe ME et al (2006) Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Anal Chem 78(21):7397–7409

    Article  PubMed  CAS  Google Scholar 

  • Jirasek A, Schulze G et al (2004) Accuracy and precision of manual baseline determination. Appl Spectrosc 58(12):1488–1499

    Article  PubMed  CAS  Google Scholar 

  • Joos TO, Bachmann J (2005) The promise of biomarkers: research and applications. Drug Discov Today 10(9):615–616

    Article  PubMed  Google Scholar 

  • Karpievitch YV, Hill EG et al (2007) PrepMS: TOF MS data graphical preprocessing tool. Bioinformatics 23(2):264–265

    Article  PubMed  CAS  Google Scholar 

  • Kim YP, Oh YH et al (2008) Protein kinase assay on peptide-conjugated gold nanoparticles. Biosens Bioelectron 23(7):980–986

    Article  PubMed  CAS  Google Scholar 

  • Lange E, Gropl C et al (2007) A geometric approach for the alignment of liquid chromatography-mass spectrometry data. Bioinformatics 23(13): i273–i281

    Article  PubMed  CAS  Google Scholar 

  • Lee DS, Rudge AD et al (2005) A new model validation tool using kernel regression and density estimation. Comput Methods Programs Biomed 80(1):75–87

    Article  PubMed  Google Scholar 

  • Lee HJ, Lee EY et al (2006) Biomarker discovery from the plasma proteome using multidimensional fractionation proteomics. Curr Opin Chem Biol 10(1):42–49

    Article  PubMed  CAS  Google Scholar 

  • Li B, Robinson DH et al (1997) Evaluation of properties of apigenin and [G-3H]apigenin and analytic method development. J Pharm Sci 86(6):721–725

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhang Z et al (2002) Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 48(8):1296–1304

    PubMed  CAS  Google Scholar 

  • Li L, Umbach DM et al (2004) Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 20(10):1638–1640

    Article  PubMed  CAS  Google Scholar 

  • Listgarten J, Emili A (2005) Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 4(4): 419–434

    Article  PubMed  CAS  Google Scholar 

  • Listgarten J, Neal RM et al (2007) Difference detection in LC-MS data for protein biomarker discovery. Bioinformatics 23(2): e198–e204

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Li J et al (2002) A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform 13:51–60

    PubMed  CAS  Google Scholar 

  • Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Zhang K et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342

    Article  PubMed  CAS  Google Scholar 

  • Mackey AJ, Haystead TA et al (2002) Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol Cell Proteomics 1(2):139–147

    Article  PubMed  CAS  Google Scholar 

  • Malyarenko DI, Cooke WE et al (2005) Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques. Clin Chem 51(1):65–74

    Article  PubMed  CAS  Google Scholar 

  • Marcuson R, Burbeck SL et al (1982) Normalization and reproducibility of mass profiles in the detection of individual differences from urine. Clin Chem 28(6):1346–1348

    PubMed  CAS  Google Scholar 

  • McGuire JN, Overgaard J et al (2008) Mass spectrometry is only one piece of the puzzle in clinical proteomics. Brief Funct Genomic Proteomic 7(1):74–83

    Article  PubMed  CAS  Google Scholar 

  • Miklos GL, Maleszka R (2001) Integrating molecular medicine with functional proteomics: realities and expectations. Proteomics 1(1):30–41

    Article  PubMed  CAS  Google Scholar 

  • Mueller LN, Rinner O et al (2007) SuperHirn – a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7(19):3470–3480

    Article  PubMed  CAS  Google Scholar 

  • Ng JK, Ajikumar PK et al (2007) Spatially addressable protein array: ssDNA-directed assembly for antibody microarray. Electrophoresis 28(24):4638–4644

    Article  PubMed  CAS  Google Scholar 

  • Pantaleo MA, Nannini M et al (2008) Conventional and novel PET tracers for imaging in oncology in the era of molecular therapy. Cancer Treat Rev 34(2):103–121

    Article  PubMed  CAS  Google Scholar 

  • Park T, Yi SG et al (2003) Evaluation of normalization methods for microarray data. BMC Bioinformatics 4:33

    Article  PubMed  Google Scholar 

  • Perkins DN, Pappin DJ et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Perrin, C, Walczak B et al (2001) The use of wavelets for signal denoising in capillary electrophoresis. Anal Chem 73(20):4903–4917

    Article  PubMed  CAS  Google Scholar 

  • Petricoin EF, Liotta LA (2003) Mass spectrometry-based diagnostics: the upcoming revolution in disease detection. Clin Chem 49(4):533–534

    Article  PubMed  CAS  Google Scholar 

  • Petricoin EF III, Ornstein DK et al (2002a) Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 94(20):1576–1578

    PubMed  CAS  Google Scholar 

  • Petricoin EF, Ardekani AM et al (2002b) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306):572–577

    Article  PubMed  CAS  Google Scholar 

  • Petricoin EF, Belluco C et al (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 6(12):961–967

    Article  PubMed  CAS  Google Scholar 

  • Pitzer E, Masselot A et al (2007) Assessing peptide de novo sequencing algorithms performance on large and diverse data sets. Proteomics 7(17):3051–3054

    Article  PubMed  CAS  Google Scholar 

  • Poon TC, Yip TT et al (2003) Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem 49(5):752–760

    Article  PubMed  CAS  Google Scholar 

  • Powell K (2003) Proteomics delivers on promise of cancer biomarkers. Nat Med 9(8):980

    Article  PubMed  CAS  Google Scholar 

  • Prados J, Kalousis A et al (2004) Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents. Proteomics 4(8):2320–2332

    Article  PubMed  CAS  Google Scholar 

  • Prince JT, Marcotte EM (2006) Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Anal Chem 78(17):6140–6152

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Adam BL et al (2002) Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 48(10):1835–1843

    PubMed  CAS  Google Scholar 

  • Radhakrishnan R, Solomon M et al (2008) Tissue microarray – a high-throughput molecular analysis in head and neck cancer. J Oral Pathol Med 37(3):166–176

    Article  PubMed  Google Scholar 

  • Rai AJ, Zhang Z et al (2002) Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med 126(12):1518–1526

    PubMed  CAS  Google Scholar 

  • Ransohoff DF (2005) Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 5(2):142–149

    Article  PubMed  CAS  Google Scholar 

  • Rejtar T, Chen HS et al (2004) Increased identification of peptides by enhanced data processing of high-resolution MALDI TOF/TOF mass spectra prior to database searching. Anal Chem 76(20):6017–6028

    Article  PubMed  CAS  Google Scholar 

  • Resing KA, Meyer-Arendt K et al (2004) Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics. Anal Chem 76(13):3556–3568

    Article  PubMed  CAS  Google Scholar 

  • Ressom HW, Varghese RS et al (2005) Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics 21(21):4039–4045

    Article  PubMed  CAS  Google Scholar 

  • Ressom HW, Varghese RS et al (2007) Peak selection from MALDI-TOF mass spectra using ant colony optimization. Bioinformatics 23(5):619–626

    Article  PubMed  CAS  Google Scholar 

  • Ressom HW, Varghese RS et al (2008) Classification algorithms for phenotype prediction in genomics and proteomics. Front Biosci 13:691–708

    Article  PubMed  CAS  Google Scholar 

  • Rietjens IM, Steensma A et al (1995) Comparative biotransformation of hexachlorobenzene and hexafluorobenzene in relation to the induction of porphyria. Eur J Pharmacol 293(4):293–299

    Article  PubMed  CAS  Google Scholar 

  • Rifai N, Gillette MA et al (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983

    Article  PubMed  CAS  Google Scholar 

  • Rogers MA, Clarke P et al (2003) Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res 63(20):6971–6983

    PubMed  CAS  Google Scholar 

  • Rosty C, Christa L et al (2002) Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 62(6):1868–1875

    PubMed  CAS  Google Scholar 

  • Sawyers CL (2008) The cancer biomarker problem. Nature 452(7187):548–552

    Article  PubMed  CAS  Google Scholar 

  • Shackman JG, Watson CJ et al (2004) High-throughput automated post-processing of separation data. J Chromatogr A 1040(2):273–282

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Zhang PS et al (2003) Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol 30(9):539–547

    Article  PubMed  Google Scholar 

  • Shevchenko A, Sunyaev S et al (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 73(9):1917–1926

    Article  PubMed  CAS  Google Scholar 

  • Shimizu A, Nakanishi T et al (2006) Detection and characterization of variant and modified structures of proteins in blood and tissues by mass spectrometry. Mass Spectrom Rev 25(5):686–712

    Article  PubMed  CAS  Google Scholar 

  • Shin YK, Lee HJ et al (2006) Proteomic analysis of mammalian basic proteins by liquid-based two-dimensional column chromatography. Proteomics 6(4):1143–1150

    Article  PubMed  CAS  Google Scholar 

  • Silva JC, Denny R et al (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77(7):2187–2200

    Article  PubMed  CAS  Google Scholar 

  • Simpson RJ, Bernhard OK et al (2008) Proteomics-driven cancer biomarker discovery: looking to the future. Curr Opin Chem Biol 12(1):72–77

    Article  PubMed  CAS  Google Scholar 

  • Steeves JB, Gagne HM et al (2000) Normalization of residual ions after removal of the base peak in electron impact mass spectrometry. J Forensic Sci 45(4):882–885

    PubMed  CAS  Google Scholar 

  • Stoll D, Templin MF et al (2002) Protein microarray technology. Front Biosci 7:c13–c32

    Article  PubMed  CAS  Google Scholar 

  • Stolt R, Torgrip RJ et al (2006) Second-order peak detection for multicomponent high-resolution LC/MS data. Anal Chem 78(4):975–983

    Article  PubMed  CAS  Google Scholar 

  • Su LK (2003) Co-immunoprecipitation of tumor suppressor protein-interacting proteins. Methods Mol Biol 223:135–140

    PubMed  CAS  Google Scholar 

  • Tam SW, Pirro J et al (2004) Depletion and fractionation technologies in plasma proteomic analysis. Expert Rev Proteomics 1(4):411–420

    Article  PubMed  CAS  Google Scholar 

  • Tan CS, Ploner A et al (2006) Finding regions of significance in SELDI measurements for identifying protein biomarkers. Bioinformatics 22(12):1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Tang HY, Ali-Khan N et al (2005) A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics 5(13):3329–3342

    Article  PubMed  CAS  Google Scholar 

  • Taylor JA, Johnson RS (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 11(9):1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Taylor JA, Johnson RS (2001) Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem 73(11):2594–2604

    Article  PubMed  CAS  Google Scholar 

  • Thomas TM, Shave EE et al (2002) Preparative electrophoresis: a general method for the purification of polyclonal antibodies. J Chromatogr A 944(1–2):161–168

    Article  PubMed  CAS  Google Scholar 

  • Tibshirani R, Hastie T et al (2004) Sample classification from protein mass spectrometry, by ‘peak probability contrasts’. Bioinformatics 20(17):3034–3044

    Article  PubMed  CAS  Google Scholar 

  • Villanueva J, Philip J et al (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 76(6):1560–1570

    Article  PubMed  CAS  Google Scholar 

  • Vlahou A, Laronga C et al (2003) A novel approach toward development of a rapid blood test for breast cancer. Clin Breast Cancer 4(3):203–209

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Naik D et al (2003) Protocols for disease classification from mass spectrometry data. Proteomics 3(9):1692–1698

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Johnson A et al (2005) TSE clearance during plasma products separation process by Gradiflow(TM). Biologicals 33(2):87–94

    Article  PubMed  CAS  Google Scholar 

  • Wang MZ, Howard B et al (2003) Analysis of human serum proteins by liquid phase isoelectric focusing and matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics 3(9):1661–1666

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Tang H et al (2006) Normalization regarding non-random missing values in high-throughput mass spectrometry data. Pac Symp Biocomput 315–326

    Google Scholar 

  • Wang P, Tang H et al (2007) A statistical method for chromatographic alignment of LC-MS data. Biostatistics 8(2):357–367

    Article  PubMed  Google Scholar 

  • Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187): 580–589

    Article  PubMed  CAS  Google Scholar 

  • Whelan RJ, Sunahara RK et al (2004) Affinity assays using fluorescence anisotropy with capillary electrophoresis separation. Anal Chem 76(24):7380–7386

    Article  PubMed  CAS  Google Scholar 

  • Won Y, Song HJ et al (2003) Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 3(12):2310–2316

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Abbott T et al (2003) Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19(13):1636–1643

    Article  PubMed  CAS  Google Scholar 

  • Yasui Y, Pepe M et al (2003) A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4(3):449–463

    Article  PubMed  Google Scholar 

  • Yewdell JW (2003) Immunology. Hide and seek in the peptidome. Science 301(5638):1334–1335

    CAS  Google Scholar 

  • Yu JS, Ongarello S et al (2005) Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 21(10):2200–2209

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, He S et al (2008) PeakSelect: preprocessing tandem mass spectra for better peptide identification. Rapid Commun Mass Spectrom 22(8):1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lu X et al (2006) Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 7:197

    Article  PubMed  CAS  Google Scholar 

  • Zhukov TA, Johanson RA et al (2003) Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 40(3):267–279

    PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by the Bioinformatics Core Research Grant at The Methodist Research Institute, Cornell University. Dr. Zhou is partially funded by The Methodist Hospital Scholarship Award. He and Dr. Wong are also partially funded by NIH grants R01LM08696, R01LM009161, and R01AG028928. The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jin, G., Zhou, X., Wang, H., Wong, S.T.C. (2009). The Challenges in Blood Proteomic Biomarker Discovery. In: Pham, T. (eds) Computational Biology. Applied Bioinformatics and Biostatistics in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0811-7_12

Download citation

Publish with us

Policies and ethics