Skip to main content

Lymphoma

  • Chapter
  • First Online:
Clinical PET and PET/CT

Abstract

The term lymphoma identifies two distinct groups of tumors: Hodgkin’s disease (HD) and non-Hodgkin’s lymphoma (NHL). Since the late 1970s, significant progress has been made in the elucidation of the pathogenesis of NHL as a clonal malignant expansion of B or T cells. B lymphocytes are generated in the bone marrow as a result of a multistep differentiation process. On entering the germinal center (GC), B cells activate into centroblasts, proliferate, and mature into centrocytes. Cells that have exited the GC have two fates: differentiation into either plasma cells or into memory B cells. Based on the absence or presence of somatic immunoglobulin (Ig) hypermutation, B-cell NHL can be grouped into two broad histogenetic categories: One derived from pre-GC B cells and devoid of Ig mutations (mantle cell lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma), and the other derived from B cells that have transited through the GC and harbor Ig mutations (follicular lymphoma, lymphoplasmacytoid lymphoma, mucosa-associated lymphoid tissue lymphoma, diffuse large cell lymphoma, Burkitt’s lymphoma). The pathogenesis of lymphoma represents a multistep process involving the progressive and clonal accumulation of multiple genetic lesions affecting protooncogenes and tumor suppressor genes. The genome of lymphoma cells is relatively stable and is characterized by few nonrandom chromosomal abnormalities, commonly represented by chromosomal translocations. A new classification, called the Revised European-American Lymphoma, was created in the early 1990s to establish definitions for distinct lymphomatous diseases based on morphologic, clinical, immunophenotypic, and molecular genetic features (Table 28.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandlund JT, Downing JR, Crist WM. Non-Hodgkin’s lymphoma in childhood. N Engl J Med. 1996;334:1238–41.

    Article  PubMed  CAS  Google Scholar 

  2. Jemal A, Thomas A, Murray T, et al. Cancer statistics. CA Cancer J Clin. 2002;52:23–47.

    Article  PubMed  Google Scholar 

  3. Newton R, Ferlay J, Beral V, et al. The epidemiology of non-Hodgkin’s lymphoma: comparison of nodal and extranodal sites. Int J Cancer. 1997;72:923–7.

    Article  PubMed  CAS  Google Scholar 

  4. Glass AG, Karnell LH, Menck HR. The national cancer data base report on non-Hodgkin’s lymphoma. Cancer. 1997;80:2311–20.

    Article  PubMed  CAS  Google Scholar 

  5. Weisenburger D. The International Lymphoma Study Group classification of non-Hodgkin’s lymphoma: pathology findings from a large multicenter study. Mod Pathol. 1997;10:136A.

    Google Scholar 

  6. Larcos G, Farlow DC, Antico VF, et al. The role of high dose Ga-67 scintigraphy in staging untreated patients with lymphoma. Austr N Z J Med. 1994;24:5–8.

    Article  CAS  Google Scholar 

  7. Tatsumi M, Kitayama H, Sugahara H, et al. Whole-body hybrid PET with F-18 FDG in the staging of non-Hodgkin’s lymphoma. J Nucl Med. 2001;42:601–8.

    PubMed  CAS  Google Scholar 

  8. Carr R, Barrington S, Madam B, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood. 1998;91:3340–6.

    PubMed  CAS  Google Scholar 

  9. Finkelstein JD, Martin JJ. Methionine metabolism in mammals. J Biol Chem. 1986;26:1582–7.

    Google Scholar 

  10. Leskinen-Kallio S, Ruotsalainem U, Nägren K, et al. Uptake of C-11 methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med. 1991;32:1211–8.

    PubMed  CAS  Google Scholar 

  11. Rodriguez M, Rehn S, Ahlstrom H, et al. Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J Nucl Med. 1995;36:1790–6.

    PubMed  CAS  Google Scholar 

  12. Sutinen E, Jyrkio S, Varpula M, et al. Nodal staging of lymphoma with whole-body PET: comparison of C-11 methionine and FDG. J Nucl Med. 2000;41:1980–8.

    PubMed  CAS  Google Scholar 

  13. Kubota R, Kubota K, Yamada S, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med. 1995;36:484–92.

    PubMed  CAS  Google Scholar 

  14. Charion M, Beyer T, Kinahan PE, et al. Whole-body FDG PET and CT imaging of malignancies using a combined PET/CT scanner. J Nucl Med. 1999;40:256.

    Google Scholar 

  15. Moog F, Kotzerke J, Reske SN. FDG-PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med. 1999;40:1407–13.

    PubMed  CAS  Google Scholar 

  16. Lapela M, Leskinen-Kallio S, Minn H, et al. Increased glucose metabolism in untreated non-Hodgkin’s lymphoma: a study with PET and F-18 FDG. Blood. 1995;9:3522–7.

    Google Scholar 

  17. Hoffman JM, Waskin HA, Schifter T, et al. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med. 1993;34:567–75.

    PubMed  CAS  Google Scholar 

  18. DeVita VT, Cannelos GP. The lymphomas. Semin Hematol. 1999;36:84–94.

    PubMed  CAS  Google Scholar 

  19. Surbone A, Longo DL, DeVita VL, et al. Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy; significance and management. J Clin Oncol. 1988;6:1832–7.

    PubMed  CAS  Google Scholar 

  20. Janicek M, Kaplan W, Neuberg D, et al. Early restaging gallium scans predict outcome in poor prognosis patients with aggressive non-Hodgkin’s lymphoma treated with high-dose CHOP chemotherapy. J Clin Oncol. 1997;15:1631–7.

    PubMed  CAS  Google Scholar 

  21. Front D, Bar-Shalom R, Mor M, et al. Aggressive non-Hodgkin’s lymphoma: early prediction of outcome with Ga-67 scintigraphy. Radiology. 2000;214:253–7.

    PubMed  CAS  Google Scholar 

  22. Hill M, Cunningham D, MacVicar D, et al. Role of magnetic resonance imaging in predicting relapse in residual masses after treatment of lymphoma. J Clin Oncol. 1993;11:2273–8.

    PubMed  CAS  Google Scholar 

  23. Kostakoglu L, Leonard JP, Coleman M, et al. Comparison of F-18 fluorodeoxyglucose PET and Ga-67 scintigraphy in evaluation of lymphoma. J Clin Oncol. 2000;19:10a.

    Google Scholar 

  24. Mikhaeel NG, Timothy AR, Hain SF, O’Doherty MJ. F-18 FDG PET for the assessment of residual masses on CT following treatment of lymphomas. Ann Oncol. 2000;11:147–50.

    Article  PubMed  Google Scholar 

  25. Romer W, Hanauske A, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood. 1998;91:4464–71.

    PubMed  CAS  Google Scholar 

  26. Kostakoglu L, Coleman M, Leonard JP, et al. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med. 2002;43:1018–27.

    PubMed  Google Scholar 

  27. Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body PET using F-18 FDG for post-treatment ­evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical CT scan imaging. Blood. 1999;94:429–33.

    PubMed  CAS  Google Scholar 

  28. Torizuka T, Zasadny KR, Kison PV, et al. Metabolic response of non-Hodgkin’s lymphoma to I-131 anti-B1 radioimmunotherapy: evaluation with FDG PET. J Nucl Med. 2000;41:999–1005.

    PubMed  CAS  Google Scholar 

  29. Hernandez-Maraver D, Hernandez-Navarro F, Gomez-Leon N, et al. Positron emission tomography/computed tomography: diagnostic accuracy in lymphoma. Br J Haematol. 2006;135(3):293–302.

    Article  PubMed  Google Scholar 

  30. Schaefer NG, Strobel K, Taverna C, Hany TF. Bone involvement in patient with lymphoma: the role of FDG-PET/CT. Eur J Nucl Med Mol Imag. 2007;34(1):60–7.

    Article  Google Scholar 

  31. Querellou S, Valette F, Bodet-Milin C, et al. FDG-PET/CT predicts outcome in patients with aggressive non-Hodgkin’s lymphoma and Hodgkin’s disease. Ann Hematol. 2006;85(11):759–67.

    Article  PubMed  CAS  Google Scholar 

  32. Strobel K, Schaefer NG, Renner C, et al. Cost-effectiveness therapy remission assessment in ­lymphoma patients using 2-F-18 fluor-2-deoxy-D-glucose positron emission tomography/computed tomography: is an end of treatment exam necessary in all patients? Ann Oncol. 2007;18(4):658–64.

    Article  PubMed  CAS  Google Scholar 

  33. Schaefer NG, Hany TF, Taverna C, et al. Non-Hodgkin’s lymphoma and Hodgkin’s disease: coregistered FDG PET and CT at staging and restaging- do we need contrast-enhanced CT? Radiology. 2004;232(2):823–9.

    Article  PubMed  Google Scholar 

  34. Hoskin PJ. FDG PET in the management of ­lymphoma: a clinical perspective. Eur J Nucl Med. 2002;29:449–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Edmund Kim M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, E.E., Wong, F.C.L. (2013). Lymphoma. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics