Skip to main content

Gynecologic Cancers

  • Chapter
  • First Online:
Clinical PET and PET/CT

Abstract

Gynecologic cancers constitute approximately 20% of visceral cancers in women and are divided into three major types: ovarian, cervical, and endometrial cancers. The majority of gynecologic cancers require surgical removal, along with adjuvant radiotherapy or chemotherapy. The therapeutic option varies with the type and stage of cancer. Therefore, accurate staging is necessary for optimal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soper JT. Radiographic imaging in gynecologic oncology. Clin Obstet Gynecol. 2001;44:485–94.

    Article  PubMed  CAS  Google Scholar 

  2. Vardi J, Tadros G, Foemmel R, Shebes M. Plasma lipid-associated sialic acid and serum CA125 as indicators of disease status with ovarian cancer. Obstet Gynecol. 1989;73:379–83.

    Google Scholar 

  3. Gupta NC, Frank AR, Casey MJ. FDG PET imaging for post-treatment evaluation of patients with genitourinary malignancies. J Nucl Med. 1992;33:829.

    Google Scholar 

  4. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics. CA Cancer J Clin. 1999;49:8–31.

    Article  PubMed  CAS  Google Scholar 

  5. Chou CY, Chang CH, Yao BL, et al. Color Doppler ultrasonography and serum CA125 in the differentiation of benign and malignant ovarian tumors. J Clin Ultrasound. 1994;22:491–6.

    Article  PubMed  CAS  Google Scholar 

  6. Grab D, Flock F, Stohr I, Nussele K. Classification of asymptomatic adnexal masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gyncol Oncol. 2000;77:454–9.

    Article  CAS  Google Scholar 

  7. Kawahara K, Yoshida Y, Kurokawa T, et al. Evaluation of positron emission tomography with tracer 18-fluorodeoxyglucose in addition to magnetic resonance imaging in the diagnosis of ovarian cancer in selected women after ultrasonography. J Comput Assist Tomogr. 2004;28:505–16.

    Article  PubMed  Google Scholar 

  8. Ju W, Kim SC. Discrepancy between magnetic resonance and 18F-fluorodeoxyglucose positron emission tomography imaging in a case of borderline ovarian tumor. Int J Gynecol Cancer. 2007;17:1031–3. Epub 2007 Mar 26.

    Article  PubMed  CAS  Google Scholar 

  9. Krag DN. Clinical utility of immunoscintigraphy in managing ovarian cancer. J Nucl Med. 1993;34:545–8.

    PubMed  CAS  Google Scholar 

  10. Hubner KF, McDonald TW, Niethammer JG, et al. Assessment of primary and metastatic ovarian cancer by positron emission tomography using 2-[18F]deoxyglucose. Gynecol Oncol. 1993;51:197–204.

    Article  PubMed  CAS  Google Scholar 

  11. Zimny M, Schroder W, Wolters S, et al. 18F-fluorodeoxyglucose PET in ovarian carcinoma: methodology and preliminary results. Nuklearmedizin. 1997;36:228–33.

    PubMed  CAS  Google Scholar 

  12. Schroder W, Zimny M, Rudlowski C, et al. The role of 18F-fluoro-deoxyglucose positron emission tomography in diagnosis of ovarian cancer. Int J Cancer Oncol. 1999;9:117–22.

    Google Scholar 

  13. Romer W, Avril N, Dose J, et al. Metabolische Charakterisierung von Ovarialtumoren mit der Positronen-Emissions-Tomographie und F-18 Fluordeoxyglukose. Rofo. 1997;166:62–8.

    Article  PubMed  CAS  Google Scholar 

  14. Omura GA, Bradhy MF, Homesley HD, et al. Long-term follow-up and prognostic factor analysis in advanced ovarian carcinoma: the Gynecologic Oncologic Group experience. J Clin Oncol. 1991;9:1138–50.

    PubMed  CAS  Google Scholar 

  15. Ozols RF. Chemotherapy of ovarian cancer. In: De Vita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology, Updates, vol. 1. 2nd ed. Philidelphia: N.B. Lippincott; 1988. p. 1–12.

    Google Scholar 

  16. Bragg DG, Hricak H. Imaging in gynecologic malignancies. Cancer. 1993;71:1648–51.

    Article  PubMed  CAS  Google Scholar 

  17. Manuel M, Holschneider CH, Williams CM, et al. Correlation of FDG PET scans with surgicopathologic findings in ovarian cancers. J Nucl Med. 2002;43:29.

    Google Scholar 

  18. Delbeke D, Martin WH. Positron emission tomography imaging in oncology. Radiol Clin North Am. 2001;39:883–917.

    Article  PubMed  CAS  Google Scholar 

  19. Torizuka T, Nobezawa S, Kanno T, et al. Ovarian cancer recurrence: role of whole-body positron emission tomography using 2-[fluorine-18]-fluoro-2-deoxy-D-glucose. Eur J Nucl Med. 2002;29:797–803.

    Article  CAS  Google Scholar 

  20. Yen R-F, Sun S-S, Shen Y-Y, et al. Whole-body positron emission tomography with 18F-fluoro-2-deoxyglucose for the detection of recurrent ovarian cancer. Anticancer Res. 2001;21:3691–4.

    PubMed  CAS  Google Scholar 

  21. Barter J, Barnes W. Second-look laparotomy. In: Rubin S, Sutton G, editors. Ovarian cancer. New York: McGraw-Hill; 1993. p. 269–300.

    Google Scholar 

  22. Rose PG, Faulhaber P, Miraldi F, et al. Positron emission tomography for evaluating a complete clinical response in patients with ovarian or peritoneal carcinoma: correlation with second-look laparotomy. Gynecol Oncol. 2001;82:17–21.

    Article  PubMed  CAS  Google Scholar 

  23. Casey MJ, Gupta NC, Muths CK. Experience with positrom emission tomography (PET) scans in patients with ovarian cancer. Gynecol Oncol. 1994;53:331–8.

    Article  PubMed  CAS  Google Scholar 

  24. Zimny M, Siggelkow W, Schroder W, et al. 2-[Fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography in the diagnosis od recurrent ovarian cancer. Gynecol Oncol. 2001;83:310–5.

    Article  PubMed  CAS  Google Scholar 

  25. Chung J-K, Kang SB, Kim MH, et al. The role of 18F-FDG PET in patients with advanced epithelial ovarian carcinoma as a substitute for second-look operation. J Nucl Med. 2002;43:282.

    Google Scholar 

  26. Nakamoto Y, Saga T, Ishimori T, et al. Clinical value of positron emission tomography with FDG for recurrent ovarian cancer. AJR AM J Roentgeol. 2001;176:1449–54.

    CAS  Google Scholar 

  27. Karlan BY, Hoh C, Tse N, et al. Whole-body positron emission tomography with (fluorine-18)-2-deoxyglucose can detect metastatic carcinoma of the fallopian tube. Gynecol Oncol. 1993;49:383–8.

    Article  PubMed  CAS  Google Scholar 

  28. Mangili G, Picchio M, Sironi S, Viganò R, Rabaiotti E, Bornaghi D, Bettinardi V, Crivellaro C, Messa C, Fazio F. Integrated PET/CT as a first-line re-staging modality in patients with suspected recurrence of ovarian cancer. Eur J Nucl Med Mol Imaging. 2007;34:658–66. Epub 2006 Dec 20.

    Article  PubMed  CAS  Google Scholar 

  29. Chung HH, Kang WJ, Kim JW, Park NH, Song YS, Chung JK, Kang SB, Lee HP. Role of [18F]FDG PET/CT in the assessment of suspected recurrent ovarian cancer: correlation with clinical or histological findings. Eur J Nucl Med Mol Imaging. 2007;34:480–6. Epub 2006 Nov 7.

    Article  PubMed  Google Scholar 

  30. Simcock B, Neesham D, Quinn M, Drummond E, Milner A, Hicks RJ. The impact of PET/CT in the management of recurrent ovarian cancer. Gynecol Oncol. 2006;103:271–6. Epub 2006 Apr 19.

    Article  PubMed  Google Scholar 

  31. Blodgett TM, Meltzer CC, Townsend DW, et al. PET/CT in restaging patients with ovarian carcinoma. J Nucl Med. 2002;43:310.

    Google Scholar 

  32. Nanni C, Rubello D, Farsad M, et al. (18)F-FDG PET/CT in the evaluation of recurrent ovarian cancer: a prospective study on forty-one patients. Eur J Surg Oncol. 2005;31:792–7.

    Article  PubMed  CAS  Google Scholar 

  33. García-Velloso MJ, Jurado M, Ceamanos C, Aramendía JM, Garrastachu MP, López-García G, Richter JA. Diagnostic accuracy of FDG PET in the follow-up of platinum-sensitive epithelial ovarian carcinoma. Eur J Nucl Med Mol Imaging. 2007;34:1396–405. Epub 2007 Feb 21.

    Article  PubMed  Google Scholar 

  34. Drieskens O, Stroobants S, Gysen M, et al. Positron emission tomography with FDG in the detection of peritoneal and retroperitoneal metastases of ovarian cancer. Gynecol Obstet Invest. 2003;55:130–4.

    Article  PubMed  CAS  Google Scholar 

  35. Turlakow A, Yeung HW, Salmon AS, et al. Peritoneal carcinomatosis: role of (18)F-FDG PET. J Nucl Med. 2003;44:1407–12.

    PubMed  Google Scholar 

  36. Baum RP, Przetak C. Evaluation of therapy response in breast and ovarian cancer patients by positron ­emission tomography (PET). Q J Nucl Med. 2001;45:257–68.

    PubMed  CAS  Google Scholar 

  37. Smith GT, Hubner KF, McDonald T, et al. Cost analysis of FDG PET for managing patients with ovarian cancer. Clin Positron Imaging. 1999;2:63–70.

    Article  PubMed  Google Scholar 

  38. Smith GT, Hubner KF, McDonald T, et al. Avoiding second-look surgery and reducing costs in managing patients with ovarian cancer by applying F-18-FDG PET. Clin Positron Imaging. 1998;1:263.

    Article  PubMed  Google Scholar 

  39. Soussan M, Wartski M, Cherel P, Fourme E, Goupil A, Le Stanc E, Callet N, Alexandre J, Pecking AP, Alberini JL. Impact of FDG PET-CT imaging on the decision making in the biologic suspicion of ovarian carcinoma recurrence. Gynecol Oncol. 2008;108:160–5. Epub 2007 Oct 24.

    Article  PubMed  Google Scholar 

  40. Miraldi F, Vesselle H, Faulhaber PF, et al. Elimination of artifactual accumulation of FDG in PET imaging of colorectal cancer. Clin Nucl Med. 1998;23:3–7.

    Article  PubMed  CAS  Google Scholar 

  41. Lapela M, Leskinen-Kallio S, Varpula M, et al. Metabolic imaging of ovarian tumors with carbon-11-methioninre: a PET study. J Nucl Med. 1995;36:2196–220.

    PubMed  CAS  Google Scholar 

  42. Jeong HJ, Chung J-K, Paeng JC, et al. Usefulness of 11C methionine PET in the pelvic region for evaluation of recurrent gynecologic cancer in postoperative state. J Nucl Med. 2002;43:283.

    Google Scholar 

  43. Hricak H, Yu KK. Raiology in invasive cervical ­cancer. AJR AM J Roentgeol. 1996;167:1101–8.

    CAS  Google Scholar 

  44. Eifel PJ, Berek JS, Thigpen JT. Cancer of the cervix, vagina, and vulva. In: De Vita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. 5th ed. Philidelphia: Lippincott-Raven; 1433. p. 1478–997.

    Google Scholar 

  45. Morice P, Sabourin JC, Pautier P, et al. Isolated paraaortic node involvement in stage IB/II cervical carcinoma. Eur J Gynaecol Oncol. 2000;21:123–5.

    PubMed  CAS  Google Scholar 

  46. Sugawara Y, Eisbruch A, Kosuda S, et al. Escaluation of FDG PET in patients with cervical cancer. J Nucl Med. 1999;40:1125–31.

    PubMed  CAS  Google Scholar 

  47. Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol. 2001;19:3745–9.

    PubMed  CAS  Google Scholar 

  48. Reinhardt MJ, Ehritt-Braun C, Vogelgesang D, et al. Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology. 2001;218:776–82.

    PubMed  CAS  Google Scholar 

  49. Narayan K, Hicks RJ, Jobling T, et al. A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: potential impact on treatment. Int J Gynecol Cancer. 2001;11:263–71.

    Article  PubMed  CAS  Google Scholar 

  50. Williams AD, Cousins C, Soutter WP, et al. Detection of pelvic lymph node metastases in gynecologic malignancy: a comparison of CT, MR imaging, and positron emission tomography. AJR AM J Roentgeol. 2001;177:343–8.

    CAS  Google Scholar 

  51. Rose PG, Adler LP, Rodriguez M, et al. PET for evaluating paraaortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol. 1999;17:41–5.

    PubMed  CAS  Google Scholar 

  52. Park DH, Kim KH, Park SY, et al. Diagnosis of recurrent uterine carvical cancer: computed tomography versus positron emission tomography. Korean J Radiol. 2000;1:51–5.

    Article  PubMed  CAS  Google Scholar 

  53. Sun SS, Chen TC, Yen RF, et al. Value of whole-body 18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent cervical cancer. Anticancer Res. 2001;21:2957–62.

    PubMed  CAS  Google Scholar 

  54. Chung HH, Jo H, Kang WJ, Kim JW, Park NH, Song YS, Chung JK, Kang SB, Lee HP. Clinical impact of integrated PET/CT on the management of suspected cervical cancer recurrence. Gynecol Oncol. 2007;104:529–34. Epub 2006 Oct 16.

    Article  PubMed  Google Scholar 

  55. Nakamoto Y, Eisbruch A, Achtyes ED, et al. Prognostic value of positron emission tomography using F-18-fluorodeoxyglucose in patients with cervical cancer undergoing radiotherapy. Gynecol Oncol. 2002;84:289–95.

    Article  PubMed  Google Scholar 

  56. Pinkus E, Miller TR, Grisby PW. Improved prognostic value of FDG PET in patients with cervical cancer using a simple visual analysis of tumor characteristics. J Nucl Med. 2002;43:28.

    Google Scholar 

  57. Jang HJ, Lee KH, Kim YH, et al. The role of FDG PET for predicting prognosis in squamous cell type uterine cervical carcinoma patients. J Nucl Med. 2002;43:28.

    Google Scholar 

  58. Yasuda S, Ide M, Takagi S, Shohtsu A. Intrauterine accumulation of F-18 FDG during menstruation. Clin Nucl Med. 1997;22:793–4.

    Article  PubMed  CAS  Google Scholar 

  59. Nakahara T, Fujii H, Ide M, et al. F-18 FDG uptake in endometrial cancer. Clin Nucl Med. 2001;26:82–3.

    Article  PubMed  CAS  Google Scholar 

  60. Belhocine TZ, Bolle KS, Willems-Foidart J. Usefulness of 18F-FDG PET in the post-therapy surveillance of endometrial carcinoma. J Nucl Med. 2002;43:118–9.

    Google Scholar 

  61. Umesaki N, Tanada T, Miyama M, et al. Positron emission tomography 18F-fluorodeoxyglucose of uterine sarcoma: a comparison with magnetic resonance imaging and power doppler imaging. Gynecol Oncol. 2001;80:372–7.

    Article  PubMed  CAS  Google Scholar 

  62. Cohn DE, Dehdashti F, Gibb RK, et al. Prospective evaluation of positron emission tomography for the detection of groin node metastases from vulva cancer. Gynecol Oncol. 2002;85:179.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Ki Kim M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, SK., Kim, S.E., Chung, JK., Kim, E.E. (2013). Gynecologic Cancers. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics