Skip to main content

Cerebrovascular Disease and PET

  • Chapter
  • First Online:
Book cover Clinical PET and PET/CT

Abstract

Positron emission tomography (PET) and O-15 tracers have been used greater than 30 years to evaluate human cerebral hemodynamics in patients with cerebral vascular disease (CVD). Quantitative measurement of cerebral blood flow (CBF) and metabolism is important because critical impairment of cerebral circulation induces irreversible damage to the cerebral cortex, causing neuronal deficits or functional damage. The cerebral regions of impaired hemodynamics, also referred to as “misery perfusion” are visualized by mismatch between oxygen metabolism and CBF (Lenzi et al. J Neurol Neurosurg Psychiatry 41:11–7, 1978; Baron et al. Stroke 12:454–9, 1981), which is usually delineated by the elevation of oxygen extraction fraction (OEF) in O-15 gas PET (Baron et al. Stroke 12:454–9, 1981; Powers et al. Ann Neurol 16:546–52, 1984; Powers and Raichle Stroke 16:361–76, 1985; Powers et al. Ann Intern Med 106:27–34, 1987; Powers Ann Neurol 29:231–40, 1991). Because patients with misery perfusion show a significantly higher incidence rate of stroke or recurrent stroke (Yamauchi et al. J Neurol Neurosurg Psychiatry 61:18–25, 1996; Yamauchi et al. J Nucl Med 40:1992–8; Grubb et al. JAMA 280:1055–60), evaluation of hemodynamic status in CVD patients is very important to determine indication of neurosurgical treatment. To quantitatively evaluate cerebral hemodynamic status, methods for precise measurement were developed and its accuracy has also been improved with the progression of PET scanner resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lenzi GL, Jones T, McKenzie CG, Moss S. Non-invasive regional study of chronic cerebrovascular disorders using the oxygen-15 inhalation technique. J Neurol Neurosurg Psychiatry. 1978;41:11–7.

    Article  PubMed  CAS  Google Scholar 

  2. Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal “misery-perfusion ­syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography. Stroke. 1981;12:454–9.

    Article  PubMed  CAS  Google Scholar 

  3. Powers WJ, Grubb Jr RL, Raichle ME. Physiological responses to focal cerebral ischemia in humans. Ann Neurol. 1984;16:546–52.

    Article  PubMed  CAS  Google Scholar 

  4. Powers WJ, Raichle ME. Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke. 1985;16:361–76.

    Article  PubMed  CAS  Google Scholar 

  5. Powers WJ, Press GA, Grubb Jr RL, Gado M, Raichle ME. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med. 1987;106:27–34.

    PubMed  CAS  Google Scholar 

  6. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.

    Article  PubMed  CAS  Google Scholar 

  7. Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Nakamura K, Yamamoto Y, et al. Evidence of misery perfusion and risk for recurrent stroke in major cerebral arterial occlusive diseases from PET. J Neurol Neurosurg Psychiatry. 1996;61:18–25.

    Article  PubMed  CAS  Google Scholar 

  8. Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Ueno M, Nishizawa S, et al. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med. 1999;40:1992–8.

    PubMed  CAS  Google Scholar 

  9. Grubb Jr RL, Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO, et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998;280:1055–60.

    Article  PubMed  Google Scholar 

  10. Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ, Metzger JM. The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen 15. Radiology. 1969;93:31–40.

    PubMed  CAS  Google Scholar 

  11. Ter-Pogossian MM, Eichling JO, Davis DO, Welch MJ. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J Clin Invest. 1970;49:381–91.

    Article  PubMed  CAS  Google Scholar 

  12. Raichle ME, Grubb Jr RL, Gado MH, Eichling JO, Ter-Pogossian MM. Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol. 1976;33:523–6.

    Article  PubMed  CAS  Google Scholar 

  13. Raichle ME, Grubb Jr RL, Eichling JO, Ter-Pogossian MM. Measurement of brain oxygen utilization with radioactive oxygen-15: experimental verification. J Appl Physiol. 1976;40:638–40.

    PubMed  CAS  Google Scholar 

  14. Jones T, Chesler DA, Ter-Pogossian MM. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol. 1976;49:339–43.

    Article  PubMed  CAS  Google Scholar 

  15. Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.

    Article  PubMed  CAS  Google Scholar 

  16. Lammertsma AA, Jones T, Frackowiak RS, Lenzi GL. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15. J Comput Assist Tomogr. 1981;5:544–50.

    Article  PubMed  CAS  Google Scholar 

  17. Lammertsma AA, Wise RJ, Heather JD, Gibbs JM, Leenders KL, Frackowiak RS, et al. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 2. Results in normal subjects and brain tumour and stroke patients. J Cereb Blood Flow Metab. 1983;3:425–31.

    Article  PubMed  CAS  Google Scholar 

  18. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H 2 15 O. I. Theory and error analysis. J Nucl Med. 1983;24:782–9.

    PubMed  CAS  Google Scholar 

  19. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H 2 15 O. II. Implementation and validation. J Nucl Med. 1983;24:790–8.

    PubMed  CAS  Google Scholar 

  20. Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med. 1984;25:177–87.

    PubMed  CAS  Google Scholar 

  21. Lammertsma AA, Brooks DJ, Beaney RP, Turton DR, Kensett MJ, Heather JD, et al. In vivo measurement of regional cerebral haematocrit using positron emission tomography. J Cereb Blood Flow Metab. 1984;4:317–22.

    Article  PubMed  CAS  Google Scholar 

  22. Gambhir SS, Huang SC, Hawkins RA, Phelps ME. A study of the single compartment tracer kinetic model for the measurement of local cerebral blood flow using 15O-water and positron emission tomography. J Cereb Blood Flow Metab. 1987;7:13–20.

    Article  PubMed  CAS  Google Scholar 

  23. Lammertsma AA, Frackowiak RS, Hoffman JM, Huang SC, Weinberg IN, Dahlbom M, et al. The C15O2 build-up technique to measure regional cerebral blood flow and volume of distribution of water. J Cereb Blood Flow Metab. 1989;9:461–70.

    Article  PubMed  CAS  Google Scholar 

  24. Ohta S, Meyer E, Thompson CJ, Gjedde A. Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab. 1992;12:179–92.

    Article  PubMed  CAS  Google Scholar 

  25. Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab. 1996;16:765–80.

    Article  PubMed  CAS  Google Scholar 

  26. Herscovitch P, Raichle ME. Effect of tissue heterogeneity on the measurement of cerebral blood flow with the equilibrium C15O2 inhalation technique. J Cereb Blood Flow Metab. 1983;3:407–15.

    Article  PubMed  CAS  Google Scholar 

  27. Alpert NM, Eriksson L, Chang JY, Bergstrom M, Litton JE, Correia JA, et al. Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab. 1984;4:28–34.

    Article  PubMed  CAS  Google Scholar 

  28. Carson RE, Huang SC, Green MV. Weighted integration method for local cerebral blood flow measurements with positron emission tomography. J Cereb Blood Flow Metab. 1986;6:245–58.

    Article  PubMed  CAS  Google Scholar 

  29. Huang SC, Feng DG, Phelps ME. Model dependency and estimation reliability in measurement of cerebral oxygen utilization rate with oxygen-15 and dynamic positron emission tomography. J Cereb Blood Flow Metab. 1986;6:105–19.

    Article  PubMed  CAS  Google Scholar 

  30. Koeppe RA, Holden JE, Ip WR. Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography. J Cereb Blood Flow Metab. 1985;5:224–34.

    Article  PubMed  CAS  Google Scholar 

  31. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H 2 15 O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab. 1986;6:536–45.

    Article  PubMed  CAS  Google Scholar 

  32. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab. 1989;9:874–85.

    Article  PubMed  CAS  Google Scholar 

  33. Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab. 1993;13:15–23.

    Article  PubMed  CAS  Google Scholar 

  34. Kimura Y, Hsu H, Toyama H, Senda M, Alpert NM. Improved signal-to-noise ratio in parametric images by cluster analysis. Neuroimage. 1999;9:554–61.

    Article  PubMed  CAS  Google Scholar 

  35. Shidahara M, Watabe H, Kim KM, Kudomi N, Ito H, Iida H. Optimal scan time of oxygen-15-labeled gas inhalation autoradiographic method for measurement of cerebral oxygen extraction fraction and cerebral oxygen metabolic rate. Ann Nucl Med. 2008;22:667–75.

    Article  PubMed  Google Scholar 

  36. Okazawa H, Yamauchi H, Sugimoto K, Takahashi M, Toyoda H, Kishibe Y, et al. Quantitative comparison of the bolus and steady-state methods for measurement of cerebral perfusion and oxygen metabolism: PET study using 15O-gas and water. J Cereb Blood Flow Metab. 2001;21:793–803.

    Article  PubMed  CAS  Google Scholar 

  37. Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, Gjedde A. Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J Cereb Blood Flow Metab. 1999;19:272–7.

    Article  PubMed  CAS  Google Scholar 

  38. Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, et al. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imag. 2004;31:635–43.

    Article  Google Scholar 

  39. Derdeyn CP, Videen TO, Simmons NR, Yundt KD, Fritsch SM, Grubb RL, et al. Count-based PET method for predicting ischemic stroke in patients with symptomatic carotid arterial occlusion. Radiology. 1999;212:499–506.

    PubMed  CAS  Google Scholar 

  40. Derdeyn CP, Videen TO, Grubb Jr RL, Powers WJ. Comparison of PET oxygen extraction fraction methods for the prediction of stroke risk. J Nucl Med. 2001;42:1195–7.

    PubMed  CAS  Google Scholar 

  41. Ibaraki M, Shimosegawa E, Miura S, Takahashi K, Ito H, Kanno I, et al. PET measurements of CBF, OEF, and CMRO2 without arterial sampling in hyperacute ischemic stroke: method and error analysis. Ann Nucl Med. 2004;18:35–44.

    Article  PubMed  Google Scholar 

  42. Kobayashi M, Okazawa H, Tsuchida T, Kawai K, Fujibayashi Y, Yonekura Y. Diagnosis of misery perfusion using noninvasive O-15 gas PET. J Nucl Med. 2006;47:1581–6.

    PubMed  Google Scholar 

  43. Kobayashi M, Kudo T, Tsujikawa T, Isozaki M, Arai Y, Fujibayashi Y, et al. Shorter examination method for the diagnosis of misery perfusion using count-based OEF elevation in 15O-gas PET. J Nucl Med. 2008;49:242–6.

    Article  PubMed  Google Scholar 

  44. Grubb Jr RL, Phelps ME, Raichle ME, Ter-Pogassian MM. The effect of arterial blood pressure on the regional cerebral blood volume by x-ray fluorescence. Stroke. 1973;4:390–9.

    Article  PubMed  Google Scholar 

  45. MacKenzie ET, Farrar JK, Fitch W, Graham DI, Gregory PC, Harper AM. Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow and pial arteriolar caliber. Stroke. 1979;10:711–8.

    Article  PubMed  CAS  Google Scholar 

  46. Derdeyn CP, Grubb Jr RL, Powers WJ. Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology. 1999;53:251–9.

    Article  PubMed  CAS  Google Scholar 

  47. Nemoto EM, Yonas H, Kuwabara H, Pindzola RR, Sashin D, Meltzer CC, et al. Identification of hemodynamic compromise by cerebrovascular reserve and oxygen extraction fraction in occlusive vascular disease. J Cereb Blood Flow Metab. 2004;24:1081–9.

    Article  PubMed  Google Scholar 

  48. Baron JC, Bousser MG, Comar D, Soussaline F, Castaigne P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol. 1981;20:273–84.

    Article  PubMed  CAS  Google Scholar 

  49. The EC/IC bypass study group, Barnett HJM, Sackett DL, Taylor DW, Peerless SJ, Haynes RB, Gates PC, et al. Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. The EC/IC bypass study group. N Engl J Med. 1985;313:1191–200.

    Article  Google Scholar 

  50. The EC/IC bypass study group, Haynes RB, Taylor DW, Mukherjee J, Sackett DL, Cote R, Meguro K, et al. The international cooperative study of extracranial/intracranial arterial anastomosis (EC/IC bypass study): methodology and entry characteristics. The EC/IC bypass study group. Stroke. 1985;16:397–406.

    Article  Google Scholar 

  51. Hennerici M, Hülsbömer HB, Rautenberg W, Hefter H. Spontaneous history of asymptomatic internal carotid occlusion. Stroke. 1986;17:718–22.

    Article  PubMed  CAS  Google Scholar 

  52. Hankey GJ, Warlow CP. Prognosis of symptomatic carotid occlusion: an overview. Cerebrovasc Dis. 1991;1:245–56.

    Article  Google Scholar 

  53. Derdeyn CP, Yundt KD, Videen TO, Carpenter DA, Grubb Jr RL, Powers WJ. Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke. 1998;29:754–8.

    Article  PubMed  CAS  Google Scholar 

  54. Vorstrup S. Tomographic cerebral blood flow measurements in patients with ischemic cerebrovascular disease and evaluation of the vasodilatory capacity by the acetazolamide test. Acta Neurol Scand. 1988;114(Suppl):1–48.

    CAS  Google Scholar 

  55. Yonas H, Smith HA, Durham SR, Pentheny SL, Johnson DW. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg. 1993;79:483–9.

    Article  PubMed  CAS  Google Scholar 

  56. Yonas H, Pindzola RR. Physiological determination of cerebrovascular reserves and its use in clinical management. Cerebrovasc Brain Metab Rev. 1994;6:325–40.

    PubMed  CAS  Google Scholar 

  57. Gotoh F, Meyer JS, Tomita M. Carbonic anhydrase inhibition and cerebral venous blood gases and ions in man. Demonstration of increased oxygen availability to ischemic brain. Arch Intern Med. 1966;117:39–46.

    Article  PubMed  CAS  Google Scholar 

  58. Okazawa H, Yamauchi H, Sugimoto K, Toyoda H, Kishibe Y, Takahashi M. Effects of acetazolamide on cerebral blood flow, blood volume and oxygen metabolism: a PET study with healthy volunteers. J Cereb Blood Flow Metab. 2001;21:1472–9.

    Article  PubMed  CAS  Google Scholar 

  59. Kuroda S, Kamiyama H, Abe H, Houkin K, Isobe M, Mitsumori K. Acetazolamide test in detecting reduced cerebral perfusion reserve and predicting long-term prognosis in patients with internal carotid artery occlusion. Neurosurgery. 1993;32:912–8.

    Article  PubMed  CAS  Google Scholar 

  60. Webster MW, Makaroun MS, Steed DL, Smith HA, Johnson DW, Yonas H. Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J Vasc Surg. 1995;21:338–44. discussion 344–345.

    Article  PubMed  CAS  Google Scholar 

  61. Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke. 2001;32:2110–6.

    Article  PubMed  CAS  Google Scholar 

  62. Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001;124:457–67.

    Article  PubMed  CAS  Google Scholar 

  63. Ogasawara K, Ogawa A, Yoshimoto T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study. Stroke. 2002;33:1857–62.

    Article  PubMed  Google Scholar 

  64. Ogasawara K, Ogawa A, Terasaki K, Shimizu H, Tominaga T, Yoshimoto T. Use of cerebrovascular reactivity in patients with symptomatic major cerebral artery occlusion to predict 5-year outcome: comparison of xenon-133 and iodine-123-IMP single-photon emission computed tomography. J Cereb Blood Flow Metab. 2002;22:1142–8.

    Article  PubMed  CAS  Google Scholar 

  65. Hasegawa Y, Yamaguchi T, Tsuchiya T, Minematsu K, Nishimura T. Sequential change of hemodynamic reserve in patients with major cerebral artery occlusion or severe stenosis. Neuroradiology. 1992;34:15–21.

    Article  PubMed  CAS  Google Scholar 

  66. Yokota C, Hasegawa Y, Minematsu K, Yamaguchi T. Effect of acetazolamide reactivity and long-term outcome in patients with major cerebral artery occlusive diseases. Stroke. 1998;29:640–4.

    Article  PubMed  CAS  Google Scholar 

  67. Yonas H, Pindzola RR, Meltzer CC, Sasser H. Qualitative versus quantitative assessment of cerebrovascular reserves. Neurosurgery. 1998;42:1005–10. discussion 1011–1012.

    Article  PubMed  CAS  Google Scholar 

  68. Okazawa H, Tsuchida T, Kobayashi M, Arai Y, Pagani M, Isozaki M, Yonekura Y. Can reductions in baseline CBF and vasoreactivity detect misery perfusion in chronic cerebrovascular disease? Eur J Nucl Med Mol Imag. 2007;34:121–9.

    Article  Google Scholar 

  69. Mountz JM, Liu HG, Deutsch G. Neuroimaging in cerebrovascular disorders: measurement of cerebral physiology after stroke and assessment of stroke recovery. Semin Nucl Med. 2003;33:56–76.

    Article  PubMed  Google Scholar 

  70. Liu HG, Mountz JM. F-18 FDG brain positron emission tomography and Tl-201 early and delayed SPECT in distinguishing atypical cerebral tumor from cerebral infarction. Clin Nucl Med. 2003;28:241–2.

    PubMed  Google Scholar 

  71. Feeney DM, Baron JC. Diaschisis. Stroke. 1986;17:817–30.

    Article  PubMed  CAS  Google Scholar 

  72. Herold S, Brown MM, Frackowiak RS, Mansfield AO, Thomas DJ, Marshall J. Assessment of cerebral haemodynamic reserve: correlation between PET parameters and CO2 reactivity measured by the intravenous 133 xenon injection technique. J Neurol Neurosurg Psychiatry. 1988;51:1045–50.

    Article  PubMed  CAS  Google Scholar 

  73. Ito H, Kanno I, Shimosegawa E, Tamura H, Okane K, Hatazawa J. Hemodynamic changes during neural deactivation in human brain: a positron emission tomography study of crossed cerebellar diaschisis. Ann Nucl Med. 2002;16:249–54.

    Article  PubMed  Google Scholar 

  74. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  PubMed  CAS  Google Scholar 

  75. Baron JC. Positron tomography in cerebral ischemia. A review. Neuroradiology. 1985;27:509–16.

    Article  PubMed  CAS  Google Scholar 

  76. Raynaud C, Rancurel G, Samson Y, Baron JC, Soucy JP, Kieffer E, et al. Pathophysiologic study of chronic infarcts with I-123 isopropyl iodo-amphetamine (IMP): the importance of periinfarct area. Stroke. 1987;18:21–9.

    Article  PubMed  CAS  Google Scholar 

  77. Seitz RJ, Azari NP, Knorr U, Binkofski F, Herzog H, Freund HJ. The role of diaschisis in stroke recovery. Stroke. 1999;30:1844–50.

    Article  PubMed  CAS  Google Scholar 

  78. Karbe H, Kessler J, Herholz K, Fink GR, Heiss WD. Long-term prognosis of poststroke aphasia studied with positron emission tomography. Arch Neurol. 1995;52:186–90.

    Article  PubMed  CAS  Google Scholar 

  79. Cappa SF, Perani D, Grassi F, Bressi S, Alberoni M, Franceschi M, et al. A PET follow-up study of ­recovery after stroke in acute aphasics. Brain Lang. 1997;56:55–67.

    Article  PubMed  CAS  Google Scholar 

  80. Carmichael ST, Tatsukawa K, Katsman D, Tsuyuguchi N, Kornblum HI. Evolution of diaschisis in a focal stroke model. Stroke. 2004;35:758–63.

    Article  PubMed  Google Scholar 

  81. Clarke S, Assal G, Bogousslavsky J, Regli F, Townsend DW, Leenders KL, et al. Pure amnesia after unilateral left polar thalamic infarct: topographic and sequential neuropsychological and metabolic (PET) correlations. J Neurol Neurosurg Psychiatry. 1994;57:27–34.

    Article  PubMed  CAS  Google Scholar 

  82. Stenset V, Grambaite R, Reinvang I, Hessen E, Cappelen T, Bjornerud A, et al. Diaschisis after thalamic stroke: a comparison of metabolic and structural changes in a patient with amnesic syndrome. Acta Neurol Scand Suppl. 2007;187:68–71.

    Article  PubMed  CAS  Google Scholar 

  83. Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke. 1993;24:1784–8.

    Article  PubMed  CAS  Google Scholar 

  84. Herholz K, Heiss WD. Functional imaging correlates of recovery after stroke in humans. J Cereb Blood Flow Metab. 2000;20:1619–31.

    Article  PubMed  CAS  Google Scholar 

  85. Karbe H, Szelies B, Herholz K, Heiss WD. Impairment of language is related to left parieto-temporal glucose metabolism in aphasic stroke patients. J Neurol. 1990;237:19–23.

    Article  PubMed  CAS  Google Scholar 

  86. Heiss WD, Thiel A, Kessler J, Herholz K. Disturbance and recovery of language function: correlates in PET activation studies. Neuroimage. 2003;20(Suppl 1):S42–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiko Okazawa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Okazawa, H., Kim, YK. (2013). Cerebrovascular Disease and PET. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics