Skip to main content

Neurodegenerative Diseases

  • Chapter
  • First Online:

Abstract

Dementia is a major public health challenge, not only for clinicians, but also for society as a whole. Prevalence rates of dementia are dependent on age, and continuously increase. Twenty four million people are suspected of suffering from dementia worldwide, with about 4.6 million new patients every year. The number is estimated to double every 20 years, and is expected to reach up to 81 million cases by the year 2040. The prevalence is likely to rise more rapidly in developing countries (Ferri et al. Lancet 366(9503):2112–7, 2005). In the US, there are about 3.4 million patients, and the overall prevalence in the US between the ages of 71–79 years is 5.0 %, and 24.2 % for the ages of 80–89 years (Plassman et al. Neuroepidemiology. 29(1–2):125–32, 2007). Furthermore, dementia is related to increased mortality (Perkins et al. Int J Geriatr Psychiatry. 17(6):566–73, 2002). Thus, there is an increasing demand on the health care system and public resources to care for the people with dementia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7.

    Article  PubMed  Google Scholar 

  2. Plassman BL, Langa KM, Fisher GG, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology. 2007;29(1–2):125–32.

    Article  PubMed  CAS  Google Scholar 

  3. Perkins AJ, Hui SL, Ogunniyi A, et al. Risk of mortality for dementia in a developing country: the Yoruba in Nigeria. Int J Geriatr Psychiatry. 2002;17(6):566–73.

    Article  PubMed  Google Scholar 

  4. Kabasakalian A, Finney GR. Reversible dementias. Int Rev Neurobiol. 2009;84:283–302.

    Article  PubMed  CAS  Google Scholar 

  5. Lowenthal DT, Paran E, Burgos L, Williams LS. General characteristics of treatable, reversible, and untreatable dementias. Am J Geriatr Cardiol. 2007;16(3):136–42.

    Article  PubMed  Google Scholar 

  6. Aguero-Torres H, Fratiglioni L, Guo Z, Viitanen M, Winblad B. Mortality from dementia in advanced age: a 5-year follow-up study of incident dementia cases. J Clin Epidemiol. 1999;52(8):737–43.

    Article  PubMed  CAS  Google Scholar 

  7. Wimo A, Winblad B, Jonsson L. An estimate of the total worldwide societal costs of dementia in 2005. Alzheimers Dement. 2007;3(2):81–91.

    Article  PubMed  Google Scholar 

  8. Pietrini P, Alexander GE, Furey ML, Hampel H, Guazzelli M. The neurometabolic landscape of cognitive decline: in vivo studies with positron emission tomography in Alzheimer’s disease. Int J Psychophysiol. 2000;37(1):87–98.

    Article  PubMed  CAS  Google Scholar 

  9. Teunissen CE, de Vente J, Steinbusch HW, De Bruijn C. Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging. 2002;23(4):485–508.

    Article  PubMed  CAS  Google Scholar 

  10. Parihar MS, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci. 2004;11(5):456–67.

    Article  PubMed  CAS  Google Scholar 

  11. Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800.

    Article  PubMed  Google Scholar 

  12. Marx J. Alzheimer’s disease. A new take on tau. Science. 2007;316(5830):1416–7.

    Article  PubMed  CAS  Google Scholar 

  13. Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118(1):5–36.

    Article  PubMed  CAS  Google Scholar 

  14. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  PubMed  CAS  Google Scholar 

  15. Heyman A, Fillenbaum GG, Gearing M, et al. Comparison of Lewy body variant of Alzheimer’s disease with pure Alzheimer’s disease: consortium to establish a registry for Alzheimer’s disease, part XIX. Neurology. 1999;52(9):1839–44.

    Article  PubMed  CAS  Google Scholar 

  16. Terry Jr AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther. 2003;306(3):821–7.

    Article  PubMed  CAS  Google Scholar 

  17. Mesulam MM, Geula C. Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol. 1988;275(2):216–40.

    Article  PubMed  CAS  Google Scholar 

  18. Scheff SW, Price DA. Alzheimer’s disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis. 2006;9(3 Suppl):101–15.

    PubMed  Google Scholar 

  19. Nordberg A. Neuroreceptor changes in Alzheimer disease. Cerebrovasc Brain Metab Rev. 1992;4(4):303–28.

    PubMed  CAS  Google Scholar 

  20. Flynn DD, Ferrari-DiLeo G, Levey AI, Mash DC. Differential alterations in muscarinic receptor subtypes in Alzheimer’s disease: implications for cholinergic-based therapies. Life Sci. 1995;56(11–12):869–76.

    Article  PubMed  CAS  Google Scholar 

  21. Ruberg M, Mayo W, Brice A, et al. Choline acetyltransferase activity and [3H]vesamicol binding in the temporal cortex of patients with Alzheimer’s disease, Parkinson’s disease, and rats with basal forebrain lesions. Neuroscience. 1990;35(2):327–33.

    Article  PubMed  CAS  Google Scholar 

  22. Efange SM, Garland EM, Staley JK, Khare AB, Mash DC. Vesicular acetylcholine transporter density and Alzheimer’s disease. Neurobiol Aging. 1997;18(4):407–13.

    Article  PubMed  CAS  Google Scholar 

  23. Frey KA, Minoshima S, Kuhl DE. Neurochemical imaging of Alzheimer’s disease and other degenerative dementias. Q J Nucl Med. 1998;42(3):166–78.

    PubMed  CAS  Google Scholar 

  24. Langlais PJ, Thal L, Hansen L, Galasko D, Alford M, Masliah E. Neurotransmitters in basal ganglia and cortex of Alzheimer’s disease with and without Lewy bodies. Neurology. 1993;43(10):1927–34.

    Article  PubMed  CAS  Google Scholar 

  25. Perry EK, Marshall E, Perry RH, et al. Cholinergic and dopaminergic activities in senile dementia of Lewy body type. Alzheimer Dis Assoc Disord. 1990;4(2):87–95.

    PubMed  CAS  Google Scholar 

  26. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–46.

    Article  PubMed  Google Scholar 

  27. Lehericy S, Marjanska M, Mesrob L, Sarazin M, Kinkingnehun S. Magnetic resonance imaging of Alzheimer’s disease. Eur Radiol. 2007;17(2):347–62.

    Article  PubMed  Google Scholar 

  28. Anderson VC, Litvack ZN, Kaye JA. Magnetic resonance approaches to brain aging and Alzheimer disease-associated neuropathology. Top Magn Reson Imag. 2005;16(6):439–52.

    Article  Google Scholar 

  29. Bobinski M, de Leon MJ, Wegiel J, et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience. 2000;95(3):721–5.

    Article  PubMed  CAS  Google Scholar 

  30. Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002;1(1):13–21.

    Article  PubMed  Google Scholar 

  31. Frisoni GB. Structural imaging in the clinical diagnosis of Alzheimer’s disease: problems and tools. J Neurol Neurosurg Psychiatry. 2001;70(6):711–8.

    Article  PubMed  CAS  Google Scholar 

  32. Judenhofer MS, Wehrl HF, Newport DF, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14(4):459–65.

    Article  PubMed  CAS  Google Scholar 

  33. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32(4):486–510.

    Article  PubMed  CAS  Google Scholar 

  34. Ishii K, Sasaki M, Kitagaki H, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med. 1997;38(6):925–8.

    PubMed  CAS  Google Scholar 

  35. Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.

    Article  PubMed  CAS  Google Scholar 

  36. Herholz K, Nordberg A, Salmon E, et al. Impairment of neocortical metabolism predicts progression in Alzheimer’s disease. Dement Geriatr Cogn Disord. 1999;10(6):494–504.

    Article  PubMed  CAS  Google Scholar 

  37. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  38. Gomez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci. 1996;16(14):4491–500.

    PubMed  CAS  Google Scholar 

  39. Silverman DH, Truong CT, Kim SK, et al. Prognostic value of regional cerebral metabolism in patients undergoing dementia evaluation: comparison to a quantifying parameter of subsequent cognitive performance and to prognostic assessment without PET. Mol Genet Metab. 2003;80(3):350–5.

    Article  PubMed  CAS  Google Scholar 

  40. Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60(8):1374–7.

    Article  PubMed  CAS  Google Scholar 

  41. Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30(8):1104–13.

    Article  PubMed  Google Scholar 

  42. Patwardhan MB, McCrory DC, Matchar DB, Samsa GP, Rutschmann OT. Alzheimer disease: operating characteristics of PET – a meta-analysis. Radiology. 2004;231(1):73–80.

    Article  PubMed  Google Scholar 

  43. Johnson JK, Head E, Kim R, Starr A, Cotman CW. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol. 1999;56(10):1233–9.

    Article  PubMed  CAS  Google Scholar 

  44. Rogers SL, Friedhoff LT. Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: an interim analysis of the results of a US multicentre open label extension study. Eur Neuropsychopharmacol. 1998;8(1):67–75.

    Article  PubMed  CAS  Google Scholar 

  45. Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry. 2002;159(5):738–45.

    Article  PubMed  Google Scholar 

  46. Silverman DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med. 2004;45(4):594–607.

    PubMed  Google Scholar 

  47. Cho H, Kwon JH, Seo HJ, Kim JS. The short-term effect of acetylcholinesterase inhibitor on the regional cerebral blood flow of Alzheimer’s disease. Arch Gerontol Geriatr. 2010;50(2):222–6.

    Google Scholar 

  48. Nobili F, Koulibaly M, Vitali P, et al. Brain perfusion follow-up in Alzheimer’s patients during treatment with acetylcholinesterase inhibitors. J Nucl Med. 2002;43(8):983–90.

    PubMed  CAS  Google Scholar 

  49. Iyo M, Namba H, Fukushi K, et al. Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease. Lancet. 1997;349(9068):1805–9.

    Article  PubMed  CAS  Google Scholar 

  50. Kuhl DE, Minoshima S, Fessler JA, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol. 1996;40(3):399–410.

    Article  PubMed  CAS  Google Scholar 

  51. Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berlin). 2006;188(4):509–20.

    Article  CAS  Google Scholar 

  52. Nordberg A, Hartvig P, Lilja A, et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect. 1990;2(3):215–24.

    Article  PubMed  CAS  Google Scholar 

  53. Warpman U, Nordberg A. Epibatidine and ABT 418 reveal selective losses of alpha 4 beta 2 nicotinic receptors in Alzheimer brains. Neuroreport. 1995;6(17):2419–23.

    Article  PubMed  CAS  Google Scholar 

  54. Ding YS, Logan J, Bermel R, et al. Dopamine receptor-mediated regulation of striatal cholinergic activity: positron emission tomography studies with norchloro[18F]fluoroepibatidine. J Neurochem. 2000;74(4):1514–21.

    Article  PubMed  CAS  Google Scholar 

  55. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.

    Article  PubMed  CAS  Google Scholar 

  56. Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006;355(25):2652–63.

    Article  PubMed  CAS  Google Scholar 

  57. Edison P, Archer HA, Hinz R, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology. 2007;68(7):501–8.

    Article  PubMed  CAS  Google Scholar 

  58. Engler H, Forsberg A, Almkvist O, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain. 2006;129(Pt 11):2856–66.

    Article  PubMed  Google Scholar 

  59. Li Y, Rinne JO, Mosconi L, et al. Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imag. 2008;35(12):2169–81.

    Article  Google Scholar 

  60. Henriksen G, Yousefi BH, Drzezga A, Wester HJ. Development and evaluation of compounds for imaging of beta-amyloid plaque by means of positron emission tomography. Eur J Nucl Med Mol Imag. 2008;35(Suppl 1):S75–81.

    Article  CAS  Google Scholar 

  61. Bench CJ, Dolan RJ, Friston KJ, Frackowiak RS. Positron emission tomography in the study of brain metabolism in psychiatric and neuropsychiatric disorders. Br J Psychiatry Suppl. 1990;9:82–95.

    PubMed  Google Scholar 

  62. Kwan LT, Reed BR, Eberling JL, et al. Effects of subcortical cerebral infarction on cortical glucose metabolism and cognitive function. Arch Neurol. 1999;56(7):809–14.

    Article  PubMed  CAS  Google Scholar 

  63. Mielke R, Kittner B, Ghaemi M, et al. Propentofylline improves regional cerebral glucose metabolism and neuropsychologic performance in vascular dementia. J Neurol Sci. 1996;141(1–2):59–64.

    Article  PubMed  CAS  Google Scholar 

  64. McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. J Alzheimers Dis. 2006;9(3 Suppl):417–23.

    PubMed  Google Scholar 

  65. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology. 2005;65(12):1863–72.

    Article  PubMed  CAS  Google Scholar 

  66. Barber R, Scheltens P, Gholkar A, et al. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer’s disease, vascular dementia, and normal aging. J Neurol Neurosurg Psychiatry. 1999;67(1):66–72.

    Article  PubMed  CAS  Google Scholar 

  67. Minoshima S, Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE. Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol. 2001;50(3):358–65.

    Article  PubMed  CAS  Google Scholar 

  68. Walker Z, Costa DC, Ince P, McKeith IG, Katona CL. In-vivo demonstration of dopaminergic degeneration in dementia with Lewy bodies. Lancet. 1999;354(9179):646–7.

    Article  PubMed  CAS  Google Scholar 

  69. Hu XS, Okamura N, Arai H, et al. 18F-fluorodopa PET study of striatal dopamine uptake in the diagnosis of dementia with Lewy bodies. Neurology. 2000;55(10):1575–7.

    Article  PubMed  CAS  Google Scholar 

  70. Neary D, Snowden J, Mann D. Frontotemporal dementia. Lancet Neurol. 2005;4(11):771–80.

    Article  PubMed  Google Scholar 

  71. Snowden JS, Neary D, Mann DM. Frontotemporal dementia. Br J Psychiatry. 2002;180:140–3.

    Article  PubMed  Google Scholar 

  72. Foster NL, Heidebrink JL, Clark CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 2007;130(Pt 10):2616–35.

    Article  PubMed  Google Scholar 

  73. Jeong Y, Cho SS, Park JM, et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med. 2005;46(2):233–9.

    PubMed  Google Scholar 

  74. Rinne JO, Laine M, Kaasinen V, Norvasuo-Heila MK, Nagren K, Helenius H. Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology. 2002;58(10):1489–93.

    Article  PubMed  CAS  Google Scholar 

  75. Dolan RJ, Bench CJ, Brown RG, Scott LC, Friston KJ, Frackowiak RS. Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. J Neurol Neurosurg Psychiatry. 1992;55(9):768–73.

    Article  PubMed  CAS  Google Scholar 

  76. Cho MJ, Lyoo IK, Lee DW, et al. Brain single photon emission computed tomography findings in depressive pseudodementia patients. J Affect Disord. 2002;69(1–3):159–66.

    Article  PubMed  Google Scholar 

  77. Alexopoulos GS, Meyers BS, Young RC, Mattis S, Kakuma T. The course of geriatric depression with “reversible dementia”: a controlled study. Am J Psychiatry. 1993;150(11):1693–9.

    PubMed  CAS  Google Scholar 

  78. Menza M, Marin H, Kaufman K, Mark M, Lauritano M. Citalopram treatment of depression in Parkinson’s disease: the impact on anxiety, disability, and cognition. J Neuropsychiatry Clin Neurosci. 2004;16(3):315–9.

    Article  PubMed  CAS  Google Scholar 

  79. Shih MC, Amaro Jr E, Ferraz HB, et al. Neuroimaging of the dopamine transporter in Parkinsons disease: first study using [99mTc]-TRODAT-1 and SPECT in Brazil. Arq Neuropsiquiatr. 2006;64(3A):628–34.

    Article  PubMed  Google Scholar 

  80. Rao G, Fisch L, Srinivasan S, et al. Does this patient have Parkinson disease? JAMA. 2003;289(3):347–53.

    Article  PubMed  Google Scholar 

  81. Rajput AH, Rozdilsky B, Rajput A. Accuracy of clinical diagnosis in parkinsonism – a prospective study. Can J Neurol Sci. 1991;18(3):275–8.

    PubMed  CAS  Google Scholar 

  82. Lachenmayer L. Differential diagnosis of parkinsonian syndromes: dynamics of time courses are essential. J Neurol. 2003;250(Suppl 1):I11–4.

    Article  PubMed  Google Scholar 

  83. Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373(9680):2055–66.

    Article  PubMed  CAS  Google Scholar 

  84. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci. 1999;22:123–44.

    Article  PubMed  CAS  Google Scholar 

  85. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121–34.

    Article  PubMed  Google Scholar 

  86. Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 2002;3(12):932–42.

    Article  PubMed  CAS  Google Scholar 

  87. Kwon KY, Choi CG, Kim JS, Lee MC, Chung SJ. Diagnostic value of brain MRI and 18F-FDG PET in the differentiation of Parkinsonian-type multiple system atrophy from Parkinson’s disease. Eur J Neurol. 2008;15(10):1043–9.

    Article  PubMed  Google Scholar 

  88. Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990;28(4):547–55.

    Article  PubMed  CAS  Google Scholar 

  89. Antonini A, Vontobel P, Psylla M, et al. Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol. 1995;52(12):1183–90.

    Article  PubMed  CAS  Google Scholar 

  90. Ribeiro MJ, Vidailhet M, Loc’h C, et al. Dopaminergic function and dopamine transporter binding assessed with positron emission tomography in Parkinson disease. Arch Neurol. 2002;59(4):580–6.

    Article  PubMed  Google Scholar 

  91. Tedroff J, Ekesbo A, Rydin E, Langstrom B, Hagberg G. Regulation of dopaminergic activity in early Parkinson’s disease. Ann Neurol. 1999;46(3):359–65.

    Article  PubMed  CAS  Google Scholar 

  92. Lee CS, Samii A, Sossi V, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol. 2000;47(4):493–503.

    Article  PubMed  CAS  Google Scholar 

  93. Rakshi JS, Uema T, Ito K, et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease A 3D [(18)F]dopa-PET study. Brain. 1999;122(Pt 9):1637–50.

    Article  PubMed  Google Scholar 

  94. Tison F, Normand E, Jaber M, Aubert I, Bloch B. Aromatic L-amino-acid decarboxylase (DOPA decarboxylase) gene expression in dopaminergic and serotoninergic cells of the rat brainstem. Neurosci Lett. 1991;127(2):203–6.

    Article  PubMed  CAS  Google Scholar 

  95. Frey KA, Koeppe RA, Kilbourn MR, et al. Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol. 1996;40(6):873–84.

    Article  PubMed  CAS  Google Scholar 

  96. Bohnen NI, Albin RL, Koeppe RA, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab. 2006;26(9):1198–212.

    PubMed  CAS  Google Scholar 

  97. Brucke T, Asenbaum S, Pirker W, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I] beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl. 1997;50:9–24.

    Article  PubMed  CAS  Google Scholar 

  98. Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J, Marek K. (123I) beta-CIT and single-photon emission computed tomographic imaging vs clinical evaluation in Parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol. 2004;61(8):1224–9.

    Article  PubMed  Google Scholar 

  99. Kim YJ, Ichise M, Ballinger JR, et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord. 2002;17(2):303–12.

    Article  PubMed  Google Scholar 

  100. Mukherjee J, Christian BT, Dunigan KA, et al. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse. 2002;46(3):170–88.

    Article  PubMed  CAS  Google Scholar 

  101. Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–6.

    Article  PubMed  CAS  Google Scholar 

  102. Wenning GK, Stefanova N. Recent developments in multiple system atrophy. J Neurol. 2009;256(11):1791–808.

    Google Scholar 

  103. Kwon KY, Choi CG, Kim JS, Lee MC, Chung SJ. Comparison of brain MRI and 18F-FDG PET in the differential diagnosis of multiple system atrophy from Parkinson’s disease. Mov Disord. 2007;22(16):2352–8.

    Article  PubMed  Google Scholar 

  104. Gilman S. Functional imaging with positron emission tomography in multiple system atrophy. J Neural Transm. 2005;112(12):1647–55.

    Article  PubMed  CAS  Google Scholar 

  105. Antonini A, Leenders KL, Vontobel P, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain. 1997;120(Pt 12):2187–95.

    Article  PubMed  Google Scholar 

  106. Blin J, Baron JC, Dubois B, et al. Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinico­metabolic correlations. Arch Neurol. 1990;47(7):747–52.

    Article  PubMed  CAS  Google Scholar 

  107. Mishina M, Ishii K, Mitani K, et al. Midbrain hypometabolism as early diagnostic sign for progressive supranuclear palsy. Acta Neurol Scand. 2004;110(2):128–35.

    Article  PubMed  CAS  Google Scholar 

  108. Ilgin N, Zubieta J, Reich SG, Dannals RF, Ravert HT, Frost JJ. PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology. 1999;52(6):1221–6.

    Article  PubMed  CAS  Google Scholar 

  109. Im JH, Chung SJ, Kim JS, Lee MC. Differential patterns of dopamine transporter loss in the basal ganglia of progressive supranuclear palsy and Parkinson’s disease: analysis with [(123)I]IPT single photon emission computed tomography. J Neurol Sci. 2006;244(1–2):103–9.

    Article  PubMed  CAS  Google Scholar 

  110. Leenders KL, Frackowiak RS, Lees AJ. Steele-Richardson-Olszewski syndrome. Brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain. 1988;111(Pt 3):615–30.

    Article  PubMed  Google Scholar 

  111. Laureys S, Salmon E, Garraux G, et al. Fluorodopa uptake and glucose metabolism in early stages of ­corticobasal degeneration. J Neurol. 1999;246(12):1151–8.

    Article  PubMed  CAS  Google Scholar 

  112. Nagahama Y, Fukuyama H, Turjanski N, et al. Cerebral glucose metabolism in corticobasal degeneration: comparison with progressive supranuclear palsy and normal controls. Mov Disord. 1997;12(5):691–6.

    Article  PubMed  CAS  Google Scholar 

  113. Garraux G, Salmon E, Peigneux P, et al. Voxel-based distribution of metabolic impairment in corticobasal degeneration. Mov Disord. 2000;15(5):894–904.

    Article  PubMed  CAS  Google Scholar 

  114. Nagasawa H, Tanji H, Nomura H, et al. PET study of cerebral glucose metabolism and fluorodopa uptake in patients with corticobasal degeneration. J Neurol Sci. 1996;139(2):210–7.

    Article  PubMed  CAS  Google Scholar 

  115. Lutte I, Laterre C, Bodart JM, De Volder A. Contribution of PET studies in diagnosis of corticobasal degeneration. Eur Neurol. 2000;44(1):12–21.

    Article  PubMed  CAS  Google Scholar 

  116. Hermann W, Barthel H, Hesse S, et al. Comparison of clinical types of Wilson’s disease and glucose metabolism in extrapyramidal motor brain regions. J Neurol. 2002;249(7):896–901.

    Article  PubMed  CAS  Google Scholar 

  117. Snow BJ, Bhatt M, Martin WR, Li D, Calne DB. The nigrostriatal dopaminergic pathway in Wilson’s disease studied with positron emission tomography. J Neurol Neurosurg Psychiatry. 1991;54(1):12–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Eun Kim M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, S.E., Lee, J.J., Song, Y.S. (2013). Neurodegenerative Diseases. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics