Skip to main content

Radiation Dosimetry in 18F-FDG PET/CT

  • Chapter
  • First Online:
Clinical PET and PET/CT

Abstract

The number of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and PET/computed tomography (CT) examinations that are performed is rapidly increasing. A total of 308,663 FDG PET and PET/CT examinations were performed in Korea in 2009 compared with 66 examinations conducted in 1994, when the first PET was installed (The Korean Society of Nuclear Medicine, Nuclear medicine procedures statistics over 48 years: year 2009, 2009). In the US, probably more than 1.5 million PET and PET/CT patient studies were performed per year in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Korean Society of Nuclear Medicine. Nuclear medicine procedures statistics over 48 years: year 2009; 2009.

    Google Scholar 

  2. Choi J, Kim B. Whole body positron emission tomography/computed tomography. J Korean Med Assoc. 2006;49:1027–34.

    Article  Google Scholar 

  3. Czernin J, Phelps ME. Positron emission tomography scanning: current and future applications. Annu Rev Med. 2002;53:89–112.

    Article  PubMed  CAS  Google Scholar 

  4. Cameron J. Radiation dosimetry. Environ Health Perspect. 1991;91:45–8.

    Article  PubMed  CAS  Google Scholar 

  5. ICRP. Recommendations of the international commission on radiological protection. ICRP Publication 60. Ann ICRP. 1991;21(1–3).

    Google Scholar 

  6. Mejia AA, Nakamura T, Itoh M, et al. Absorbed dose estimates in positron emission tomography ­studies based on the administration of 18F-labeled radio­pharmaceuticals. J Radiat Res (Tokyo). 1991; 32(3):243–61.

    Article  CAS  Google Scholar 

  7. Deloar HM, Fujiwara T, Shidahara M, et al. Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxy-d-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eur J Nucl Med. 1998;25(6):565–74.

    Article  PubMed  CAS  Google Scholar 

  8. Gelfand MJ. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients. Pediatr Radiol. 2009;39(Suppl 1):S46–56.

    Article  PubMed  Google Scholar 

  9. Brix G, Lechel U, Glatting G, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46(4):608–13.

    PubMed  CAS  Google Scholar 

  10. Brix G, Nekolla EA, Nosske D, Griebel J. Risks and safety aspects related to PET/MR examinations. Eur J Nucl Med Mol Imaging. 2009;36(Suppl 1):S131–8.

    Article  PubMed  Google Scholar 

  11. Committee to assess health risks from exposure to low levels of ionizing radiation, National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: The National Academy Press; 2006.

    Google Scholar 

  12. Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251(1):166–74.

    Article  PubMed  Google Scholar 

  13. Mossman KL. The linear no-threshold debate: where do we go from here? Med Phys. 1998;25(3):279–84. discussion 300.

    Article  PubMed  CAS  Google Scholar 

  14. Fahey FH. Dosimetry of pediatric PET/CT. J Nucl Med. 2009;50(9):1483–91.

    Article  PubMed  CAS  Google Scholar 

  15. Wu TH, Chu TC, Huang YH, et al. A positron emission tomography/computed tomography (PET/CT) acquisition protocol for CT radiation dose optimization. Nucl Med Commun. 2005;26(4):323–30.

    Article  PubMed  Google Scholar 

  16. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41(8):1369–79.

    PubMed  CAS  Google Scholar 

  17. Brix G, Beyer T. PET/CT: dose-escalated image fusion? Nuklearmedizin. 2005;44(Suppl 1):S51–7.

    PubMed  Google Scholar 

  18. Fahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST. Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology. 2007;243(1):96–104.

    Article  PubMed  Google Scholar 

  19. Groves AM, Owen KE, Courtney HM, et al. 16-detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol. 2004;77(920):662–5.

    Article  PubMed  CAS  Google Scholar 

  20. Huda W, Vance A. Patient radiation doses from adult and pediatric CT. AJR Am J Roentgenol. 2007; 188(2):540–6.

    Article  PubMed  Google Scholar 

  21. Zanzonico P, Dauer L, St Germain J. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities. Health Phys. 2008;95(5):554–70.

    Article  PubMed  CAS  Google Scholar 

  22. Hany TF, Steinert HC, Goerres GW, Buck A, von Schulthess GK. PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology. 2002;225(2):575–81.

    Article  PubMed  Google Scholar 

  23. Kamel E, Hany TF, Burger C, et al. CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med Mol Imaging. 2002;29(3):346–50.

    Article  PubMed  CAS  Google Scholar 

  24. Gelfand MJ, Lemen LC. PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med. 2007;37(5):391–8.

    Article  PubMed  Google Scholar 

  25. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231(2):305–32.

    Article  PubMed  Google Scholar 

  26. Wechalekar K, Sharma B, Cook G. PET/CT in ­oncology–a major advance. Clin Radiol. 2005;60(11):1143–55.

    Article  PubMed  CAS  Google Scholar 

  27. Lee JW, Kang KW, Paeng JC, et al. Cancer screening using 18F-FDG PET/CT in Korean asymptomatic volunteers: a preliminary report. Ann Nucl Med. 2009;23(7):685–91.

    Article  PubMed  Google Scholar 

  28. American Cancer Society. Cancer facts and figures 2009. Atlanta: American Cancer Society; 2009.

    Google Scholar 

  29. Korea National Statistical Office. Causes of death statistics in 2008. In: Statistics Korea, editor. Annual report on the cause of death statistics, 14 Sept 2009.

    Google Scholar 

  30. Yasunaga H. Who wants cancer screening with PET? A contingent valuation surgery in Japan. Eur J Radiol. 2007;70:190–4.

    Article  Google Scholar 

  31. Kojima S, Zhou B, Teramukai S, et al. Cancer screening of healthy volunteers using whole-body 18F-FDG-PET scans: the Nishidai clinic study. Eur J Cancer. 2007;43(12):1842–8.

    Article  PubMed  Google Scholar 

  32. Chen YK, Ding HJ, Su CT, et al. Application of PET and PET/CT imaging for cancer screening. Anticancer Res. 2004;24(6):4103–8.

    PubMed  Google Scholar 

  33. Chung J, Cho H, Shim J, et al. Detection of cancer with PET and PET/CT in asymptomatic volunteers. Nucl Med Mol Imaging. 2009;43(6):526–34.

    Google Scholar 

  34. Weckesser M, Schober O. Is whole-body FDG-PET valuable for health screening? Against. Eur J Nucl Med Mol Imaging. 2005;32(3):342–3.

    Article  PubMed  Google Scholar 

  35. Yasuda S, Ide M, Fujii H, et al. Application of positron emission tomography imaging to cancer screening. Br J Cancer. 2000;83(12):1607–11.

    Article  PubMed  CAS  Google Scholar 

  36. Minamimoto R, Senda M, Terauchi T, et al. Analysis of various malignant neoplasms detected by FDG-PET cancer screening program: based on a Japanese nationwide survey. Ann Nucl Med. 2011;25(1):45–54.

    Google Scholar 

  37. Yasuda S, Shohtsu A. Cancer screening with whole-body 18F-fluorodeoxyglucose positron-emission tomography. Lancet. 1997;350(9094):1819.

    Article  PubMed  CAS  Google Scholar 

  38. Robbins E. Radiation risks from imaging studies in children with cancer. Pediatr Blood Cancer. 2008;51(4):453–7.

    Article  PubMed  Google Scholar 

  39. Ide M, Suzuki Y. Is whole-body FDG-PET valuable for health screening? For. Eur J Nucl Med Mol Imaging. 2005;32(3):339–41.

    Article  PubMed  Google Scholar 

  40. Schoder H, Gonen M. Screening for cancer with PET and PET/CT: potential and limitations. J Nucl Med. 2007;48(Suppl 1):4S–18.

    PubMed  CAS  Google Scholar 

  41. Nishizawa S, Kojima S, Teramukai S, et al. Prospective evaluation of whole-body cancer screening with multiple modalities including [18F]fluorodeoxyglucose positron emission tomography in a healthy population: a preliminary report. J Clin Oncol. 2009;27(11):1767–73.

    Article  PubMed  Google Scholar 

  42. Zhu X. Dosage of radiopharmaceuticals and internal dosimetry. In: Charron M, editor. Practical pediatric PET imaging. New York: Springer; 2006. p. 37–46.

    Chapter  Google Scholar 

  43. Cristy M, Eckerman KF. Specific absorbed fractions of energy at various ages from internal photon sources. I. Methods. Oak Ridge National Laboratory Rep. ORNL/TM-8381/V1; 1987.

    Google Scholar 

  44. ICRP. Radiation dose to patients from radiopharmaceuticals (Addendum to ICRP Publication 53). ICRP Publication 80. Ann ICRP. 1998;28(3).

    Google Scholar 

  45. Treves ST, Davis RT, Fahey FH. Administered radiopharmaceutical doses in children: a survey of 13 pediatric hospitals in North America. J Nucl Med. 2008;49(6):1024–7.

    Article  PubMed  Google Scholar 

  46. Lassmann M, Biassoni L, Monsieurs M, Franzius C. The new EANM paediatric dosage card: additional notes with respect to F-18. Eur J Nucl Med Mol Imaging. 2008;35(9):1666–8.

    Article  PubMed  CAS  Google Scholar 

  47. Pediatric Nuclear Medicine Workgroup. North American consensus guidelines for administered radiopharmaceutical activities in children and adolescents 2010.

    Google Scholar 

  48. Ernst M, Freed ME, Zametkin AJ. Health hazards of radiation exposure in the context of brain imaging research: special consideration for children. J Nucl Med. 1998;39(4):689–98.

    PubMed  CAS  Google Scholar 

  49. Charron M. The biologic effects of low-level radiation. In: Charron M, editor. Practical pediatric PET imaging. New York: Springer; 2006. p. 30–6.

    Chapter  Google Scholar 

  50. Zanotti-Fregonara P, Champion C, Trebossen R, Maroy R, Devaux JY, Hindie E. Estimation of the beta  +  dose to the embryo resulting from 18F-FDG administration during early pregnancy. J Nucl Med. 2008;49(4):679–82.

    Article  PubMed  Google Scholar 

  51. ICRP. Pregnancy and medical radiation. ICRP Publication 84. Ann ICRP. 2000;30(1).

    Google Scholar 

  52. Leide-Svegborn S. Radiation exposure of patients and personnel from a PET/CT procedure with 18F-FDG. Radiat Prot Dosimetry. 2010;139(1–3):208–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunkyung Angela Park M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, E.A. (2013). Radiation Dosimetry in 18F-FDG PET/CT. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics