Skip to main content

Principles of Positron Emission Tomography Imaging

  • Chapter
  • First Online:
Clinical PET and PET/CT

Abstract

Positron emission tomography (PET) is a noninvasive medical imaging technology that can generate high-resolution images of human and animal physiological functions. It is used for a variety of clinical applications in oncology, neurology, and cardiology, but the principal clinical application of PET is in oncology, where it is used to locate malignant tumors. It can be used not only to detect disease, but also to help in planning its treatment and monitoring the effectiveness of the treatment. The PET camera can detect therapeutic changes earlier than anatomic imaging modalities because the structure being studied must significantly change in size and shape before it is detectable by anatomic imaging devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowler JS, Wolf AP. Positron emitter-labeled compounds: priorities and problems. In: Phelps M, Mazziotta J, Schelbert H, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven; 1986. p. 391–450.

    Google Scholar 

  2. Derenzo SE. Precision measurement of annihilation point spread distributions for medically important positron emitters. Proceedings of the 5th International Conference on Positron Annihilation, Sendai, Japan; 1979. p. 819–24.

    Google Scholar 

  3. Phelps ME, Mazziotta JC, Schelbert HR, editors. Positron emission tomography and autoradiography principles and applications for the brain and heart. New York: Raven; 1986.

    Google Scholar 

  4. Sorenson JA, Phelps ME. Physics in nuclear medicine. 2nd ed. Philadelphia: W.B. Saunders Company; 1987.

    Google Scholar 

  5. King MA, Hademenos G, Glick SJ. A dual photopeak window method for scatter correction. J Nucl Med. 1992;33:605–12.

    PubMed  CAS  Google Scholar 

  6. Bentourkia M, Msaki P, Cadorette J, Lecomte R. Assessment of scatter components in high-resolution PET: correction by nonstationary convolution subtraction. J Nucl Med. 1995;36:121–30.

    PubMed  CAS  Google Scholar 

  7. Watson CC, Newport D, Casey ME, et al. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. J Nucl Med. 1997;44:90–7.

    Google Scholar 

  8. Defrise M, Kinahan PE. Data acquisition and image reconstruction for 3D PET. In: Bendriem B, Twonsend DW, editors. The theory and practice of 3D PET. Dordrecht/Boston: Kluwer; 1998. p. 11–50.

    Google Scholar 

  9. Brooks RA, DiChiro G. Theory of image reconstruction in computed tomography. Radiology. 1975;117:561–72.

    PubMed  CAS  Google Scholar 

  10. Brownell GL, Burnham CA, Chesler CA, et al. Transverse section imaging of radionuclide distribution in heart, lung and brain. In: Ter-Pogossian MM, Phelps ME, Brownell GL, editors. Reconstruction tomography in diagnostic radiology and nuclear medicine. Baltimore: University Park Press; 1977. p. 293–307.

    Google Scholar 

  11. Shepp LA, Logan BF. The fourier reconstruction of a head section. IEEE Trans Nucl Sci. 1974; NS-21:21–43.

    Google Scholar 

  12. Gilland DR, Tsui BMW, McCartney WH, et al. Determination of the optimum filter function for SPECT imaging. J Nucl Med. 1988;29:643–50.

    PubMed  CAS  Google Scholar 

  13. Beis JS, Celler A, Barney JS. An automatic method to determine cutoff frequency based on image power spectrum. IEEE Trans Nucl Sci. 1995;42:2250–4.

    Article  Google Scholar 

  14. Farquhar TH, Chatziioannou A, Chinn G, et al. An investigation of filter choice for filtered back-projection reconstruction in PET. IEEE Trans Nucl Sci. 1998;45:1133–7.

    Article  Google Scholar 

  15. Baghaei H, Wong WH, Li H, et al. Evaluation of the effect of filter apodization for volume PET imaging using the 3-D RP algorithm. IEEE Trans Nucl Sci. 2003;50:3–8.

    Article  Google Scholar 

  16. Chesler DA, Riederer SJ. Ripple suppression during reconstruction in transverse tomography. Phys Med Biol. 1995;20:632–6.

    Article  Google Scholar 

  17. Baghaei H, Wong W-H, Li H, Uribe J, Wang Y, Aykac M, Liu Y, Xing T. Evaluation of the effect of filter apodization for volume PET imaging using the 3-D RP algorithm. IEEE Trans Nucl Sci. 2003; 50 I:3–8.

    Google Scholar 

  18. Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci. 1989;46:964–8.

    Article  Google Scholar 

  19. Cherry SR, Dahlbom M, Hoffman EJ. Evaluation of a 3D reconstruction algorithm for multi-slice PET scanners. Phys Med Biol. 1992;37:779–90.

    Article  PubMed  CAS  Google Scholar 

  20. Kadrmas DJ, Christian PE, Wollenweber SD, et al. Comparative evaluation of 2D and 3D lesion detectability on a full-ring BGO PET scanner. J Nucl Med. 2002;43(5):56.

    Google Scholar 

  21. Pajevic S, Dauve-Witherspoon ME, Bacharach SL, Carson RE. Noise characteristics of 3-D and 2-D PET images. IEEE Trans Med Imag. 1998;17:9–23.

    Article  CAS  Google Scholar 

  22. Baily DL, Jones T, Spinks TJ, Gilardi MC, Townsend DW. Noise equivalent count measurements in a neuro-PET scanner with retractable septa. IEEE Trans Med Imag. 1991;10:256–60.

    Article  Google Scholar 

  23. Stearns CW, Cherry SR, Thompson CJ. NECR analysis of 3D brain PET scanner designs. IEEE Trans Nucl Sci. 1994;42:1075–9.

    Article  Google Scholar 

  24. Daube-Witherspoon ME, Muehllehner G. Treatment of axial data in three-dimensional PET. J Nucl Med. 1997;28:1717–24.

    Google Scholar 

  25. Lewitt RM, Muehllehner G, Karp JS. Three-dimensional reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol. 1994;39:321–39.

    Article  Google Scholar 

  26. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximation rebinning algorithms for 3-D PET data. IEEE Trans Nucl Sci. 1997;16:145–58.

    CAS  Google Scholar 

  27. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag. 1982;MI-1:113–22.

    Article  Google Scholar 

  28. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Nucl Sci. 1994;13:601–9.

    CAS  Google Scholar 

  29. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imag. 2006;25(7):907–21.

    Article  Google Scholar 

  30. Jacobson M, Levkovitz R, Ben-Tal A, et al. Enhanced 3D PET OSEM reconstruction using inter-update Metz filtering. Phys Med Biol. 2000;45:2417–39.

    Article  PubMed  CAS  Google Scholar 

  31. Herbert TJ, Leahy RM. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibs priors. IEEE Trans Med Imag. 1989;8:194–202.

    Article  Google Scholar 

  32. Daghighian F, Hoffman EJ, Huang SC. Quality control in PET systems employing 2-D modular detectors. IEEE Trans Nucl Sci. 1989;36:1034–7.

    Article  CAS  Google Scholar 

  33. Hoffman EJ, Guerrero TM, Germano G, et al. PET system calibrations and corrections for quanitative and spatially accurate images. IEEE Trans Nucl Sci. 1989;36:1108–12.

    Article  Google Scholar 

  34. Defrise M, Townsend DW, Bailey D, et al. A normalization technique for 3D PET data. Phys Med Biol. 1991;36:939–52.

    Article  PubMed  CAS  Google Scholar 

  35. Li H, Liu Y, Xing T, Wang Y, Uribe J, Baghaei H, Xie S, Ramirez R, Wong W-H. An instantaneous photomultiplier gain calibration method for PET or gamma camera detectors using a LED network. IEEE Trans Nucl Sci. 2005;52:1295–9.

    Article  Google Scholar 

  36. Knoess C, Gremillion T, Schmand M, et al. Development of a daily quality check procedure for the high-resolution research tomograph (HRRT) using natural LSO background radioactivity. IEEE Trans Nucl Sci. 2002;49:2074–8.

    Article  Google Scholar 

  37. Oakes TR, Sossi V, Ruth TJ. Normalization in 3D PET: comparison of detector efficiencies obtained from uniform planar and cylindrical sources. IEEE 1997 Nuclear Science Symposium. 1997;2:1625–9.

    Google Scholar 

  38. Adam LE, Zaers J, Ostertag H, et al. Performance evaluation of the whole-body PET scanner ECAT EXACT HR  +  following the IEC standard. IEEE Trans Nucl Sci. 1997;44:1172–9.

    Article  Google Scholar 

  39. Townsend DW, Wensveen M, Byars LG, et al. A rotating PET camera using BGO block detectors: design, performance and applications. J Nucl Med. 1993;34:1367–993.

    PubMed  CAS  Google Scholar 

  40. Baghaei H, Wong W-H, Uribe J, et al. Correction factors for a high resolution variable field of view PET. J Nucl Med. 2000;40:279.

    Google Scholar 

  41. Casey ME, Gadagkar H, Newport D. A component based method for normalisation in volume PET. Proceedings of the 3rd International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Aix-les-Bains; 1995. p. 67–71.

    Google Scholar 

  42. Badawi RD, Lodge MA, Marsden PK. Algorithms for calculating detector efficiency normalization coefficients for true coincidences in 3D PET. Phys Med Biol. 1998;43:189–205.

    Article  PubMed  CAS  Google Scholar 

  43. Baghaei H, Li H, Wang Y, Zhang Y, Kim S, Ramirez R, Liu J, Liu S, Wong W-H. A new component-based normalization method for PET cameras. J Nucl Med. 2007;48(Suppl 2):432.

    Google Scholar 

  44. Zhang Y, Li H, Baghaei H, Liu J, Liu S, Ramirez R, An S, Wong C, Wong W. A new self-normalization for PET cameras. J Nucl Med. 2008;49(Suppl 1):64.

    Google Scholar 

  45. National Electrical Manufacturers Association. NEMA standards publication NU 2–1994: performance measurements of positron emission tomographs. Washington, DC: National Electrical Manufacturers Association; 1994.

    Google Scholar 

  46. Karp JS, Daube-Witherspoon ME, Hoffman EJ, et al. Performance standards in positron emission tomography. J Nucl Med. 1991;32:2342–50.

    PubMed  CAS  Google Scholar 

  47. National Electrical Manufacturers Association. NEMA standards publication NU 2–2001: performance measurements of positron emission tomographs. Rosslyn: National Electrical Manufacturers Association; 2001.

    Google Scholar 

  48. Daube-Witherspoon ME, Karp JS, Casey ME, et al. PET performance measurements using the NEMA NU 2–2001 standard. J Nucl Med. 2002;43:1398–409.

    PubMed  Google Scholar 

  49. Patton JA, Turkington TG. Coincidence imaging with a dual-head scintillation camera. J Nucl Med. 1999;40:432–41.

    PubMed  CAS  Google Scholar 

  50. Karp JS, Muehllehner G, Mankoff D, et al. Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med. 1990;31:617–27.

    PubMed  CAS  Google Scholar 

  51. Adam LE, Karp JS, Daube-witherspoon ME, et al. Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med. 2001;42:1821–30.

    PubMed  CAS  Google Scholar 

  52. Brix G, Zaers J, Adam LE, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med. 1997;38:1614–23.

    PubMed  CAS  Google Scholar 

  53. DeGrado T, Turkington T, Williams J, Stearns C, Hoffman J. Performance characteristics of a whole-body PET scanner. J Nucl Med. 1994;35:1398–406.

    PubMed  CAS  Google Scholar 

  54. Lewellen TK, Kohlmyer SG, Miyaoka RS, et al. Investigation of the performance of the general electric ADVANCE positron emission tomograph in 3D mode. IEEE Trans Nucl Sci. 1996;43:2199–206.

    Article  Google Scholar 

  55. Li H, Wong W-H, Baghaei H, Uribe J, Wang Y, Zhang Y, Kim S, Ramirez R, Liu J, Liu S. The engineering and initial results of a transformable low-cost high-resolution PET camera. IEEE Trans Nucl Sci. 2007;54:1583–8.

    Article  Google Scholar 

  56. Eriksson L, Wienhard K, Eriksson K, et al. The ECAT HRRT: NEMA NEC evaluation of the HRRT system, the new high-resolution research tomograph. IEEE Trans Nucl Sci. 2002;49:2085–8.

    Article  Google Scholar 

  57. Jakoby BW, Bercier Y, Watson CC, Bendriem B, Townsend DW. Performance characteristics of a new LSO PET/CT scanner with extended axial field-of-view and PSF reconstruction. IEEE Trans Nucl Sci. 2009;56:633–9.

    Article  Google Scholar 

  58. Kemp BJ, Kim C, Williams JJ, Ganin A, Lowe VJ. NEMA NU 2–2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes. J Nucl Med. 2006;47:1960–7.

    PubMed  Google Scholar 

  59. Chatziioannou AF, Cherry SR, Shao Y, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 1999;40:1164–75.

    PubMed  CAS  Google Scholar 

  60. Baghaei H, Wong W-H, Zhang Y, Li H, Ramirez R, Kim S, Liu J, Liu S, Wang Y. Monte Carlo simulation of a high resolution and high sensitivity small animal PET camera using GATE/GEANT. IEEE Trans Nucl Sci. 2007;54(5):1568–73.

    Article  Google Scholar 

  61. Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med. 2009;50:401–8.

    Article  PubMed  Google Scholar 

  62. Jones WF, Casey ME, van Lingen A, et al. LSO PET/SPECT spatial resolution: critical on-line DOI rebinning methods and results. IEEE Nuclear Science Symposium Conference Record. 2000;3:16/54–58.

    Google Scholar 

  63. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.

    PubMed  CAS  Google Scholar 

  64. Pichler BJ, Judenhofer MS, Catana C, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47:639–47.

    PubMed  Google Scholar 

  65. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48(3):471–80.

    PubMed  Google Scholar 

  66. Murthy K, Aznar M, Thompson CJ, et al. Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med. 2000;41:1851–8.

    PubMed  CAS  Google Scholar 

  67. Ramirez RA, Zhang Y, Liu S, Li H, Baghaei H, An S, Wang C, Jan M-L, Wong W-H. A lower-cost high-resolution LYSO detector development for positron emission mammography (PEM). IEEE Trans Nucl Sci. 2009;56(5):71–7.

    Article  CAS  Google Scholar 

  68. Bowen SL, Wu Y, Chaudhari AJ, et al. Initial characterization of a dedicated breast PET/CT scanner during human imaging. J Nucl Med. 2009;50:1401–8.

    Article  PubMed  Google Scholar 

  69. Holle LH, Trampert L, Lung-Kurt S, et al. Investigations of breast tumors with fluorine-18-fluorodeoxyglucose and SPECT. J Nucl Med. 1996;36:615–22.

    Google Scholar 

  70. Yutani K, Tatsumi M, Shiba E, et al. Comparison of dual-head coincidence gamma camera FDG imaging with FDG PET in detection of breast cancer and axillary lymph node metastasis. J Nucl Med. 1999;40:1003–8.

    PubMed  CAS  Google Scholar 

  71. Gerbaudo VH, Sugarbaker DJ, Britz-Cunningham S, et al. Assessment of malignant pleural mesothelioma with 18F-FDG dual-head gamma-camera coincidence imaging: comparison with histopathology. J Nucl Med. 2002;43:1144–9.

    PubMed  Google Scholar 

  72. Wong WH, Li H, Uribe J, Baghaei H, Wang Y, Yokoyam S. Feasibility of a high speed gamma camera design using the high-yield-pileup-event-recovery (HYPER) method. J Nucl Med. 2001;42:624–32.

    PubMed  CAS  Google Scholar 

  73. Adam LE, Karp JS, Daube-Witherspoon ME, Smith RJ. Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med. 2001; 42:1821–30.

    PubMed  CAS  Google Scholar 

  74. Melcher CL. Scintillation crystals for PET. J Nucl Med. 2000;41:1051–5.

    PubMed  CAS  Google Scholar 

  75. Huber S, Moses WW, Jones WF, Watson CC. Effect of 176Lu background on singles transmission for LSO-based PET cameras. Phys Med Biol. 2002; 47:3535–41.

    Article  PubMed  CAS  Google Scholar 

  76. Nehmeh S, Erdi Y, Ling C, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys. 2002;29:366–71.

    Article  PubMed  CAS  Google Scholar 

  77. Townsend DW. A combined PET/CT scanner: the choices. J Nucl Med. 2001;42:533–4.

    PubMed  CAS  Google Scholar 

  78. Goerres GW, Kamel E, Seifert B, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med. 2002;43:1469–75.

    PubMed  Google Scholar 

  79. Osman MM, Cohade C, Nakamoto Y, et al. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med. 2003;44:240–3.

    PubMed  Google Scholar 

  80. Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in ­positron emission tomography. J Nucl Med. 1980;21:1095–7.

    PubMed  CAS  Google Scholar 

  81. Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.

    PubMed  CAS  Google Scholar 

  82. Wong WH, Mullani NA, Philippe EA, et al. Performance-characteristics of the University-of-Texas TOFPET-I PET camera. J Nucl Med. 1984; 25(Suppl):46–7.

    Google Scholar 

  83. Laval M, Moszynski M, Allemand R, Cormoreche E, Guinet P, Odru R, Vacher J. Barium Fluoride inorganic scintillator for subnanosecond timing. Nucl Instrum Methods Phys Res. 1983;206(1–2):169–76.

    Article  CAS  Google Scholar 

  84. Allemand R, Gresset C, Vacher J. Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J Nucl Med. 1980;21(2): 153–5.

    PubMed  CAS  Google Scholar 

  85. van Eijk CWE. Inorganic scintillators in medical imaging. Phys Med Biol. 2002;47:R85–106.

    Article  PubMed  Google Scholar 

  86. Moses WW, Derenzo SE. Prospects for time-of-flight PET using LSO scintillator. IEEE Trans Nucl Sci. 1999;46(3):474–8.

    Article  CAS  Google Scholar 

  87. Moses WW. Current trends in scintillator detectors and materials. Nucl Instrum Methods A. 2002;487: 123–8.

    Article  CAS  Google Scholar 

  88. Surti S, Karp JS, Muehllehner G, Raby PS. Investigation of lanthanum scintillators for 3-D PET. IEEE Trans Nucl Sci. 2003;50(3):348–54.

    Article  CAS  Google Scholar 

  89. Tomitani T. Image-reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci. 1981;28(9): 4582–9.

    Google Scholar 

  90. Snyder DL, Politte DG. Image reconstruction from list-mode data in an emission tomography system having time-of-flight measurements. IEEE Trans Nucl Sci. 1983;30(3):1843–9.

    Article  Google Scholar 

  91. Parra L, Barrett HH. List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET. IEEE Trans Med Imag. 1998;17(2): 228–35.

    Article  CAS  Google Scholar 

  92. Reader AJ, Erlandsson K, Flower MA, Ott RJ. Fast accurate iterative reconstruction for low-statistics positron volume imaging. Phys Med Biol. 1998;43(4):835–46.

    Article  PubMed  CAS  Google Scholar 

  93. Groiselle CJ, Glick SJ. 3D PET list-mode iterative reconstruction using time-of-flight information. Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference; 2004 Oct; Rome; 2004; vol. 4, p. 2633–8.

    Google Scholar 

  94. Matej S, Surti S, Jayanthi S, Daube-Witherspoon ME, Lewitt RM, Karp JS. Efficient 3-D TOF PET reconstruction using view-grouped histo-images: DIRECT-direct image reconstruction for TOF. IEEE Trans Med Imag. 2009;28(5):739–51.

    Article  Google Scholar 

  95. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49(3):462–70.

    Article  PubMed  Google Scholar 

  96. Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, Panin V. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol. 2005;50(19):4507–26.

    Article  PubMed  Google Scholar 

  97. American Cancer Society: http://www.cancer.org. Cancer facts and figures 2009.

  98. Tabar L, Yen M-F, Vitak H-HTCB, Smith RA, Duffy SW. Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet. 2003;361:1405–10.

    Article  PubMed  Google Scholar 

  99. Berm RF, Schoonjans JM, Kieper DA, Majewski S, Goodman S, Civelek C. High-resolution scintimmography: a pilot study. J Nucl Med. 2002;43(7):909–15.

    Google Scholar 

  100. Hodgson NC, Gulenchyn KY. Is there a role for positron emission tomography in breast cancer staging? J Clin Oncol. 2008;26(5):712–20.

    Article  PubMed  Google Scholar 

  101. Avril N, Rosé CA, Schelling M, Dose J, Kuhn W, Bense S, Weber W, Ziegler S, Graeff H, Schwaiger M. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol. 2000;18(20):3495–502.

    PubMed  CAS  Google Scholar 

  102. Quon A, Gambhir S. FDG-PET and beyond: molecular breast cancer. J Clin Oncol. 2005;23(8):1664–73.

    Article  PubMed  CAS  Google Scholar 

  103. Jadvar H, Alavi A, Gambhir SS. 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med. 2009;50(11):1820–7.

    Article  PubMed  Google Scholar 

  104. Fuster D, Duch J, Paredes P, Velasco M, Muñoz M, Santamaría G, Fontanillas M, Pons F. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J Clin Oncol. 2008;26(29):4746–51.

    Article  PubMed  Google Scholar 

  105. Baghaei H, Li H, Zhang Y, Ramirez RA, Wang C, An S, Liu s, Wong W-H. A breast phantom lesion study with the high resolution transformable HOTPET camera. IEEE Trans Nucl Sci. 2010;57: 2504–09.

    Google Scholar 

  106. Thompson CJ, Murthy K, Picard Y, Weinberg IN, Mako R. Positron emission mammography (PEM): a promising technique for detecting breast-cancer. IEEE Trans Nucl Sci. 1995;42:1012–7.

    Article  Google Scholar 

  107. Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH. Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic image using. J Nucl Med. 2000;41(11):1851–8.

    PubMed  CAS  Google Scholar 

  108. Zhang N, Thompson CJ, Cayouette F, Jolly D, Kecani S. A prototype modular detector design for high resolution positron emission mammography imaging. IEEE Trans Nucl Sci. 2003;50(5):1624–9.

    Article  Google Scholar 

  109. Doshi NK, Shao YP, Silverman RW, Cherry SR. Design and evaluation of an LSO PET detector for breast cancer imaging. Med Phys. 2000;27:1535–43.

    Article  PubMed  CAS  Google Scholar 

  110. Raylman RR, Majewski S, Wojcik R, Weisenberger AG, Kross B, Popov V, Bishop HA. The potential role of positron emission mammography for detection of breast cancer: a phantom study. Med Phys. 2000;27:1943–54.

    Article  PubMed  CAS  Google Scholar 

  111. Raylman RR, Majewski S, Weisenberger AG, Popov V, Wojcik R, Kross B, Schreiman JS, Bishop HA. Positron emission mammography-guided breast biopsy. J Nucl Med. 2001;42:960–6.

    PubMed  CAS  Google Scholar 

  112. Raylman RR, Majewski S, Weisenberger A, Popov V, Kross B, Wojcik R. Pixelated NaI(Tl) arrays for use in positron emission mammography (PEM). J Nucl Med. 2002;43:11.

    Google Scholar 

  113. Wang G-C, Huber JS, Moses WW, Qi J, Choong W-S. Characterization of the LBNL PEM camera. IEEE Trans Nucl Sci. 2006;53(3):1129–35.

    Article  CAS  Google Scholar 

  114. Abreu MC, Aguiar JD, Almeida FG, et al. Design and evaluation of the clear-PEM scanner for positron emission mammography. IEEE Trans Nucl Sci. 2006;53(1):2621–7.

    Article  CAS  Google Scholar 

  115. Levin CS, Foudray AMK, Habte F. Impact of high energy resolution detectors on the performance of a PET system dedicated to breast cancer imaging. Phys Med. 2006;21:28–34.

    Article  PubMed  Google Scholar 

  116. Yang YF, Dokhale PA, Silverman RW, Shah KS, McClish MA, Farrell R, Entine G, Cherry SR. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes. Phys Med Biol. 2006;51:2131–42.

    Article  PubMed  Google Scholar 

  117. Wong W-H, Uribe J, Hicks K, Zambelli M. A 2-dimensional detector decoding study on BGO arrays with quadrant sharing photomultipliers. IEEE Trans Nucl Sci. 1994;41:1453–7.

    Article  CAS  Google Scholar 

  118. Uribe J, Baghaei H, Li H, et al. Basic imaging characteristics of a variable field of view PET camera using quadrant sharing detector design. IEEE Trans Nucl Sci. 1999;46:491–7.

    Article  Google Scholar 

  119. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry S. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med. 2006;47:1968–76.

    PubMed  Google Scholar 

  120. Judenhofer MS, Catana C, Swann BK, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology. 2007;244:807–14.

    Article  PubMed  Google Scholar 

  121. Schlemmer HP, Pichler B, Schmand M, et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology. 2008;248:1028–35.

    Article  PubMed  Google Scholar 

  122. Yongfeng Y, Yibao W, Cherry SR. Investigation of depth of interaction encoding for a pixelated LSO array with a single multi-channel PMT. IEEE Trans Nucl Sci. 2009;56:2594–9.

    Article  Google Scholar 

  123. Chaudhari AJ, Yang Y, Farrell R, Dokhale PA, Shah KS, Cherry SR, Badawi RD. PSPMT/APD hybrid DOI detectors for the PET component of a dedicated breast PET/CT system: a feasibility study. IEEE Trans Nucl Sci. 2008;55:853–61.

    Article  Google Scholar 

  124. Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–55.

    Article  PubMed  CAS  Google Scholar 

  125. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 5):11s–20.

    Article  PubMed  CAS  Google Scholar 

  126. Hamberg LM, Hunter GJ, Alpert NM, et al. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.

    PubMed  CAS  Google Scholar 

  127. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  128. Lindholm P, Minn H, Leskinen-Kallio S, et al. Influence of the blood glucose concentration on FDG uptake in cancer – a PET study. J Nucl Med. 1993;34:1–6.

    PubMed  CAS  Google Scholar 

  129. Langen K-J, Braun U, Kops ER, et al. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med. 1993;34:355–9.

    PubMed  CAS  Google Scholar 

  130. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18-]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.

    PubMed  CAS  Google Scholar 

  131. Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med. 1994;35:164–7.

    PubMed  CAS  Google Scholar 

  132. Frackowiak RSJ, Lenzi G-L, Jones T, Heather JD. Quantitative measurement of emission tomography: theory, procedure and normal values. J Comput Assist Tomogr. 1980;4:727–36.

    Article  PubMed  CAS  Google Scholar 

  133. Huang S-C, Carson RE, Hoffman EJ, et al. Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-water. J Cerb Blood Flow Metab. 1983;3:141–53.

    Article  CAS  Google Scholar 

  134. Ruotsalainen U, Raitakari M, Nuutila P, et al. Quantitative blood flow measurement of skeletal muscle using oxygen-15-water and PET. J Nucl Med. 1997;38:314–9.

    PubMed  CAS  Google Scholar 

  135. Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurements of local cerebral glucose metabolic rate in humans with [18F]2-fluro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–88.

    Article  PubMed  CAS  Google Scholar 

  136. Patlak C, Blasberg R, Fenstermacher J. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.

    Article  PubMed  CAS  Google Scholar 

  137. Gjedde A. Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res Rev. 1982;4:237–74.

    Article  CAS  Google Scholar 

  138. Sokoloff L, Reivich M, Kennedy C, et al. The (14C)-deozyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.

    Article  PubMed  CAS  Google Scholar 

  139. Carson RE. Parameter estimation in positron emission tomography. In: Phelps M, Mazziotta J, Schelbert H, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven; 1986. p. 347–90.

    Google Scholar 

  140. Hutchins GD, Hichwa RD, Koeppe RA. A continuous flow input function detector for H 152 O blood flow studies in positron emission tomography. IEEE Trans Nucl Sci. 1986;NS-33:546–9.

    Article  CAS  Google Scholar 

  141. Eriksson L, Holte S, Bohm C, et al. Automated blood sampling systems for positron emission tomography. IEEE Trans Nucl Sci. 1988;Ns-35:703–7.

    Article  Google Scholar 

  142. Tsuda T, Murayama H, Kitamura K, Inadama N, Yamaya T, Yoshida E, Nishikido F, Hamamoto M, Kawai H, Ono Y. Performance evaluation of a subset of a four-layer LSO detector for a small animal DOI PET scanner: jPET-RD. IEEE Trans Nucl Sci. 2006;53:35–9.

    Article  CAS  Google Scholar 

  143. Knoess C, Lenox R, Vollmar M, Casey S, Fluegge M, Lammertsma G, et al. Evaluation of the depth of interaction (DOI) for the high resolution research tomograph (HRRT): a comparison between scanners with and without DOI. IEEE NSS-MIC Conference Record; 2002. p. M10–49.

    Google Scholar 

  144. Inadama N, Murayama H, Watanabe M, Omura T, Yamashita T, Kawai H, Orita N, Tsuda T. Performance of 256ch flat panel PS-PMT with small crystals for a DOI PET detector. IEEE Trans Nucl Sci. 2005;52:15–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossain Baghaei Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baghaei, H., Wong, WH.G., Li, H. (2013). Principles of Positron Emission Tomography Imaging. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics