Skip to main content

Phase transitions in physiologically-based multiscale mean-field brain models

  • Chapter
  • First Online:
Modeling Phase Transitions in the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 4))

Abstract

Phase transitions involve sharp changes in large-scale order parameters, linked to instability of a pre-existing phase. In the neural context, such transitions and instabilities have been associated with changes of arousal state, anesthesia, onset of epilepsy, and other phenomena. Mean-field models are ideally suited to study phase transitions because of their ability to incorporate physiology from the microscale up to the whole brain in a theoretically and computationally tractable way, whereas spiking-neuron models are not feasible to study in sufficiently large assemblies to track global phase transitions. This chapter overviews a highly general and flexible class of physiologically based mean-field models, and summarizes a number of applications of them to neural phase transitions, especially in the areas of epilepsy and sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achermann, P., Borbély, A.A.: Mathematical models of sleep regulation. Front. Biosci. 8, s683–s693 (2003)

    Article  PubMed  Google Scholar 

  2. Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: The Theory of Critical Phenomena. Clarendon Press, Oxford (1992)

    Google Scholar 

  3. Braitenberg, V., Shüz, A.: Anatomy of the Cortex: Statistics and geometry. Springer, Berlin (1991)

    Google Scholar 

  4. Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A.: A unifying explaination of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex 16, 1296–1313 (2006), doi:10.1093/cercor/bhj072

    Article  CAS  PubMed  Google Scholar 

  5. Clearwater, J.M., Rennie, C.J., Robinson, P.A.: Mean field model of acetylcholine mediated dynamics in the cerebral cortex. Biol. Cybernetics 97, 449–460 (2007), doi:10.1007/s00422-007- 0186-9

    Article  CAS  Google Scholar 

  6. Feucht, M., Möller, U., Witte, H., Schmidt, K., Arnold, M., Benninger, F., Steinberger, K., Friedrich, M.H.: Nonlinear dynamics of 3 Hz spike-and-wave discharges recorded during typical absence seizures in children. Cerebral Cortex 8(6), 524–533 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Freeman, W.J.: Mass Action in the Nervous System. Academic Press, New York (1975)

    Google Scholar 

  8. Henderson, J.A., Phillips, A.J.K., Robinson, P.A.: Multielectrode electroencephalogram power spectra: Theory and application to approximate correction of volume conduction effects. Phys. Rev. E 73, 051918 (2006), doi:10.1103/PhysRevE.73.051918

    Google Scholar 

  9. Horton, J.C., Adams, D.L.: The cortical column: A structure without a function. Philos. Trans. Roy. Soc. Lond. Ser. B 360, 837–862 (2005), doi:10.1098/rstb.2005.1623

    Article  Google Scholar 

  10. Ivanov, A.V., Cairns, I.H., Robinson, P.A.: Wave damping as a critical phenomenon. Phys. Plasmas 10, 4649–4661 (2004), doi:10.1063/1.1785789

    Article  Google Scholar 

  11. Ivanov, A.V., Vladimirov, S.V., Robinson, P.A.: Criticality in a Vlasov-Poisson system: A fermioniclike universality class. Phys. Rev. E 71, 056406 (2005), doi:10.1103/PhysRevE.71.056406

    Google Scholar 

  12. Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J.W., Roberts, J.A., Robinson, P.A.: Dynamics of epileptic seizures: Evolution, spreading, and suppression. J. Theor. Biol. 257(4), 527–532 (2009), doi:10.1016/j.jtbi.2008.12.009

    CAS  Google Scholar 

  14. Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of brain rhythmic activity. T alpha-rhythm of the thalamus. Kybernetik 15, 27–37 (1974)

    Article  Google Scholar 

  15. Niedermeyer, E.: The normal EEG of the waking adult. In: E. Niedermeyer, F. Lopes da Silva (eds.), Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, pp. 149–173, Williams & Wilkins, Baltimore, fourth edn. (1999)

    Google Scholar 

  16. Nunez, P.L.: The brain wave equation: A model for the EEG. Math. Biosci. 21, 279–297 (1974)

    Article  Google Scholar 

  17. Nunez, P.L.: Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York (1995)

    Google Scholar 

  18. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain : The Neurophysics of EEG. Oxford University Press, New York, 2nd edn. (2006)

    Google Scholar 

  19. O’Connor, S.C., Robinson, P.A.: Wave-number spectrum of electrocorticographic signals. Phys. Rev. E 67, 051912 (2003), doi:10.1103/PhysRevE.67.051912

    Google Scholar 

  20. O’Connor, S.C., Robinson, P.A., Chiang, A.K.I.: Wave-number spectrum of electroencephalographic signals. Phys. Rev. E 66, 061905 (2002), doi:10.1103/PhysRevE.66.061905

    Google Scholar 

  21. Pace-Schott, E.F., Hobson, J.A.: The neurobiology of sleep: Genetics, cellular physiology and subcortical networks. Nature Rev. Neurosci. 3, 591–605 (2002), doi:10.1038/nrn895

    CAS  Google Scholar 

  22. Phillips, A.J.K., Robinson, P.A.: A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J. Biol. Rhythms 22(2), 167–179 (2007), doi:10.1177/0748730406297512

    Article  CAS  PubMed  Google Scholar 

  23. Phillips, A.J.K., Robinson, P.A.: Sleep deprivation in a quantitative physiologically-based model of the ascending arousal system. J. Theor. Biol. 255(4), 413–423 (2008), doi:10.1016/j.jtbi.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  24. Rennie, C.J., Robinson, P.A., Wright, J.J.: Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys. Rev. E 59(3), 3320–3329 (1999)

    Article  CAS  Google Scholar 

  25. Rennie, C.J., Robinson, P.A., Wright, J.J.: Unified neurophysical model of EEG spectra and evoked potentials. Biol. Cybernetics 86, 457–471 (2002), doi:10.1007/s00422-002-0310-9

    Article  CAS  Google Scholar 

  26. Robinson, P.A.: Interpretation of scaling properties of electroencephalographic fluctuations via spectral analysis and underlying physiology. Phys. Rev. E 67, 032902 (2003), doi:10.1103/PhysRevE.67.032902

    Google Scholar 

  27. Robinson, P.A.: Neurophysical theory of coherence and correlations of electroencephalographic and electrocorticographic signals. J. Theor. Biol. 222, 163–175 (2003), doi:10.1016/j.jtbi.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  28. Robinson, P.A.: Propagator theory of brain dynamics. Phys. Rev. E 72, 011904 (2005), doi:10.1103/PhysRevE.72.011904

    Google Scholar 

  29. Robinson, P.A.: Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys. Rev. E 73, 041904 (2006), doi:10.1103/PhysRevE.73.041904

    Google Scholar 

  30. Robinson, P.A., Loxley, P.N., O’Connor, S.C., Rennie, C.J.: Modal analysis of corticothalamic dynamics, lectroencephalographic spectra, and evoked potentials. Phys. Rev. E 63(4), 041909 (2001), doi:10.1103/PhysRevE.63.041909

    Google Scholar 

  31. Robinson, P.A., Rennie, C.J., Rowe, D.L.: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65(4), 041924 (2002), doi10.1103/PhysRevE.65.041924

    Google Scholar 

  32. Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C.: Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum. Brain Mapp. 23, 53–72 (2004), doi:10.1002/hbm.20032

    Article  CAS  PubMed  Google Scholar 

  33. Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C., Wright, J.J., Gordon, E., Whitehouse, R.W.: Neurophysical modeling of brain dynamics. Neuropsychopharmacology 28, s74–s79 (2003), doi:10.1038/sj.npp.1300143

    Article  PubMed  Google Scholar 

  34. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.L.: Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63(2), 021903 (2001), doi:10.1103/PhysRevE.63.021903

    Google Scholar 

  35. Robinson, P.A., Rennie, C.J., Wright, J.J., Bourke, P.: Steady states and global dynamics of electrical activity in the cerebral cortex. Phys. Rev. E 58(3), 3557–3571 (1998)

    Article  CAS  Google Scholar 

  36. Robinson, P.A., Whitehouse, R.W., Rennie, C.J.: Nonuniform corticothalamic continuum model of electroencephalographic spectra with application to split-alpha peaks. Phys. Rev. E 68, 021922 (2003), doi:10.1103/PhysRevE.68.021922

    Google Scholar 

  37. Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56(1), 826–840 (1997)

    Article  CAS  Google Scholar 

  38. Rowe, D.L., Robinson, P.A., Rennie, C.J.: Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J. Theor. Biol. 231, 413–433 (2004), doi:10.1016/j.jtbi.2004.07.004

    Article  PubMed  Google Scholar 

  39. Saper, C.B., Chou, T.C., Scammell, T.E.: The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001), doi:10.1016/S0166-2236(00)02002-6

    Article  CAS  PubMed  Google Scholar 

  40. Sherman, S.M., Guillery, R.W.: Exploring the Thalamus. Academic Press (2001)

    Google Scholar 

  41. Srinivasan, R., Nunez, P.L., Silberstein, R.B.: Spatial filtering and neocortical dynamics: Estimates of EEG coherence. IEEE Trans. Biomed. Eng. 45, 814–826 (1998)

    Article  CAS  Google Scholar 

  42. Steriade, M., Gloor, P., Llin’as, R.R., Lopes da Silva, F.H., Mesulam, M.M.: Basic mechanisms of cerebral rhythmic activities. Electroenceph. Clin. Neurophysiol. 76, 481–508 (1990)

    CAS  Google Scholar 

  43. Steriade, M., Jones, E.G., McCormick, D.A. (eds.): Thalamus (2 vols). Elsevier, Amsterdam (1997)

    Google Scholar 

  44. Steyn-Ross, D.A., Steyn-Ross, M.L., Seigh, J.W., Wilson, M.T., Gillies, I.P., Wright, J.J.: The sleep cycle modelled as a cortical phase transition. J. Biol. Phys. 31, 547–569 (2005), doi:10.1007/s10867-005-1285-2

    Article  Google Scholar 

  45. Steyn-Ross, D.A., Steyn-Ross, M.L., Wilson, M.T., Sleigh, J.W.: White-noise susceptibility and critical slowing in neurons near spiking threshold. Phys. Rev. E 74, 051920 (2006), doi10.1103/PhysRevE.74.051920

    Google Scholar 

  46. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J.: Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Phys. Rev. E 60(6), 7299–7311 (1999)

    Article  CAS  Google Scholar 

  47. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading, Mass. (1994)

    Google Scholar 

  48. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  CAS  PubMed  Google Scholar 

  49. Wilson, H.R.: Spikes, Decisions, and Actions: The Dynamical Foundations of Neurosciences. Oxford University Press, Oxford, New York (1999)

    Google Scholar 

  50. Wright, J.J., Liley, D.T.J.: Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behav. Brain Sci. 19, 285–309 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The Australian Research Council supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.A. Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Robinson, P., Rennie, C., Phillips, A., Kim, J., Roberts, J. (2010). Phase transitions in physiologically-based multiscale mean-field brain models. In: Steyn-Ross, D., Steyn-Ross, M. (eds) Modeling Phase Transitions in the Brain. Springer Series in Computational Neuroscience, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0796-7_8

Download citation

Publish with us

Policies and ethics